ABSTRACTVibrio choleraeO1 causes cholera, a dehydrating diarrheal disease. We have previously shown thatV. cholerae-specific memory B cell responses develop after cholera infection, and we hypothesize that these mediate long-term protective immunity against cholera. We prospectively followed household contacts of cholera patients to determine whether the presence of circulatingV. choleraeO1 antigen-specific memory B cells on enrollment was associated with protection againstV. choleraeinfection over a 30-day period. Two hundred thirty-six household contacts of 122 index patients with cholera were enrolled. The presence of lipopolysaccharide (LPS)-specific IgG memory B cells in peripheral blood on study entry was associated with a 68% decrease in the risk of infection in household contacts (P= 0.032). No protection was associated with cholera toxin B subunit (CtxB)-specific memory B cells or IgA memory B cells specific to LPS. These results suggest that LPS-specific IgG memory B cells may be important in protection against infection withV. choleraeO1.
Acetylcholinesterase (AChE), encoded by the ACHE gene, hydrolyzes the neurotransmitter acetylcholine to terminate synaptic transmission. Alternative splicing close to the 3΄ end generates three distinct isoforms of AChET, AChEH and AChER. We found that hnRNP H binds to two specific G-runs in exon 5a of human ACHE and activates the distal alternative 3΄ splice site (ss) between exons 5a and 5b to generate AChET. Specific effect of hnRNP H was corroborated by siRNA-mediated knockdown and artificial tethering of hnRNP H. Furthermore, hnRNP H competes for binding of CstF64 to the overlapping binding sites in exon 5a, and suppresses the selection of a cryptic polyadenylation site (PAS), which additionally ensures transcription of the distal 3΄ ss required for the generation of AChET. Expression levels of hnRNP H were positively correlated with the proportions of the AChET isoform in three different cell lines. HnRNP H thus critically generates AChET by enhancing the distal 3΄ ss and by suppressing the cryptic PAS. Global analysis of CLIP-seq and RNA-seq also revealed that hnRNP H competitively regulates alternative 3΄ ss and alternative PAS in other genes. We propose that hnRNP H is an essential factor that competitively regulates alternative splicing and alternative polyadenylation.
The catalytic subunits of acetylcholinesterase (AChE) are anchored in the basal lamina of the neuromuscular junction using a collagen-like tail subunit (ColQ) encoded by COLQ. Mutations in COLQ cause endplate AChE deficiency. An A-to-G mutation predicting p.E415G in COLQ exon 16 identified in a patient with endplate AChE deficiency causes exclusive skipping of exon 16. RNA affinity purification, mass spectrometry, and siRNA-mediated gene knocking down disclosed that the mutation disrupts binding of a splicing-enhancing RNA-binding protein, SRSF1, and de novo gains binding of a splicing-suppressing RNA-binding protein, hnRNP H. MS2-mediated artificial tethering of each factor demonstrated that SRSF1 and hnRNP H antagonistically modulate splicing by binding exclusively to the target in exon 16. Further analyses with artificial mutants revealed that SRSF1 is able to bind to degenerative binding motifs, whereas hnRNP H strictly requires an uninterrupted stretch of poly(G). The mutation compromised splicing of the downstream intron. Isolation of early spliceosome complex revealed that the mutation impairs binding of U1-70K (snRNP70) to the downstream 5′ splice site. Global splicing analysis with RNA-seq revealed that exons carrying the hnRNP H-binding GGGGG motif are predisposed to be skipped compared to those carrying the SRSF1-binding GGAGG motif in both human and mouse brains.
Extensive dead ends or host toxicity of the conventional approaches of drug development can be avoided by applying the in silico subtractive genomics approach in the designing of potential drug target against bacterial diseases. This study utilizes the advanced in silico genome subtraction methodology to design potential and pathogen specific drug targets against Mycobacterium tuberculosis, causal agent of deadly tuberculosis. The whole proteome of Mycobacterium tuberculosis F11 containing 3941 proteins have been analyzed through a series of subtraction methodologies to remove paralogous proteins and proteins that show extensive homology with human. The subsequent exclusion of these proteins ensured the absence of host cytotoxicity and cross reaction in the identified drug targets. The high stringency (expectation value 10(-100)) analysis of the remaining 2935 proteins against database of essential genes resulted in 274 proteins to be essential for Mycobacterium tuberculosis F11. Comparative analysis of the metabolic pathways of human and Mycobacterium tuberculosis F11 by KAAS at the KEGG server sorted out 20 unique metabolic pathways in Mycobacterium tuberculosis F11 that involve the participation of 30 essential proteins. Subcellular localization analysis of these 30 essential proteins revealed 7 proteins with outer membrane potentialities. All these proteins can be used as a potential therapeutic target against Mycobacterium tuberculosis F11 infection. 66 of the 274 essential proteins were uncharacterized (described as hypothetical) and functional classification of these proteins showed that they belonged to a wide variety of protein classes including zinc binding proteins, transferases, transmembrane proteins, other metal ion binding proteins, oxidoreductase, and primary active transporters etc. 2D and 3D structures of these 15 membrane associated proteins were predicted using PRED-TMBB and homology modeling by Swiss model workspace respectively. The identified drug targets are expected to be of great potential for designing novel anti-tuberculosis drugs and further screening of the compounds against these newly targets may result in discovery of novel therapeutic compounds that can be effective against Mycobacterium tuberculosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.