Software Defined Networking (SDN) is a rising technique to deal with replace patrimony network (coupled hardware and software program) control and administration by separating the control plane (software program) from the information plane (hardware). It gives adaptability to the engineers by influencing the focal control to plane straightforwardly programmable. Some new difficulties, for example, single purpose of disappointment, may be experienced because of the original control plane. SDN concentrated on flexibility where the security of the system was not essentially considered. It promises to give a potential method to present Quality of Service (QoS) ideas in the present correspondence networks. SDN automatically changes the behavior and functionality of system devices utilizing a single state program. Its immediate OpenFlow is planned by these properties. The affirmation of Quality of Service (QoS) thoughts winds up possible in a versatile and dynamic path with SDN. It gives a couple of favorable circumstances including, organization and framework versatility, improved exercises and tip-top performances.
Software Defined Networking (SDN) is a challenging chapter in today's networking era. It is a network design approach that engages the framework to be controlled or 'altered' adroitly and halfway using programming applications. SDN is a serious advancement that assures to provide a better strategy than displaying the Quality of Service (QoS) approach in the present correspondence frameworks. SDN etymologically changes the lead and convenience of system instruments using the single high state program. It separates the system control and sending functions, empowering the network control to end up specifically. It provides more functionality and more flexibility than the traditional networks. A network administrator can easily shape the traffic without touching any individual switches and services which are needed in a network. The main technology for implementing SDN is a separation of data plane and control plane, network virtualization through programmability. The total amount of time in which user can respond is called response time. Throughput is known as how fast a network can send data. In this paper, we have design a network through which we have measured the Response Time and Throughput comparing with the Real-time Online Interactive Applications (ROIA), Multiple Packet Scheduler, and NOX.
Historically, the optical access network (OAN) plays a crucial role of supporting emerging new services such as 4 k, 8 k multimedia streaming, telesurgery, augmented reality (AR), and virtual reality (VR) applications in the context of Tactile Internet (TI). In order to prevent losing connectivity to the current mobile network and Tactile Internet, the OAN must expand capacity and improve the quality of Services (QoS) mainly for the low latency of 1 ms. The optical network has adopted artificial intelligence (AI) technology, such as deep learning (DL), in order to classify and predict complex data. This trend mainly focuses on bandwidth prediction. The software-defined network (SDN) and cloud technologies provide all the essential capabilities for deploying deep learning to enhance the performance of next-generation ethernet passive optical networks (NG-EPONs). Therefore, in this paper, we propose a deep learning long-short-term-memory model-based predictive dynamic wavelength bandwidth allocation (DWBA) mechanism, termed LSTM-DWBA in NG-EPON. Future bandwidth for the end-user is predicted based on NG-EPON MPCP control messages exchanged between the OLT and ONUs and cycle times. This proposed LSTM-DWBA addresses the uplink control message overhead and QoS bottleneck of such networks. Finally, the extensive simulation results show the packet delay, jitter, packet drop, and utilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.