BackgroundNuclear factor erythroid-2 related factor 2 (NRF2) is a redox-sensitive transcription factor that positively regulates the expression of genes encoding antioxidants, xenobiotic detoxification enzymes, and drug efflux pumps, and confers cytoprotection against oxidative stress and xenobiotics in normal cells. Kelch-like ECH-associated protein 1 (KEAP1) negatively regulates NRF2 activity by targeting it to proteasomal degradation. Increased expression of cellular antioxidants and xenobiotic detoxification enzymes has been implicated in resistance of tumor cells against chemotherapeutic drugs.Methods and FindingsHere we report a systematic analysis of the KEAP1 genomic locus in lung cancer patients and cell lines that revealed deletion, insertion, and missense mutations in functionally important domains of KEAP1 and a very high percentage of loss of heterozygosity at 19p13.2, suggesting that biallelic inactivation of KEAP1 in lung cancer is a common event. Sequencing of KEAP1 in 12 cell lines and 54 non-small-cell lung cancer (NSCLC) samples revealed somatic mutations in KEAP1 in a total of six cell lines and ten tumors at a frequency of 50% and 19%, respectively. All the mutations were within highly conserved amino acid residues located in the Kelch or intervening region domain of the KEAP1 protein, suggesting that these mutations would likely abolish KEAP1 repressor activity. Evaluation of loss of heterozygosity at 19p13.2 revealed allelic losses in 61% of the NSCLC cell lines and 41% of the tumor samples. Decreased KEAP1 activity in cancer cells induced greater nuclear accumulation of NRF2, causing enhanced transcriptional induction of antioxidants, xenobiotic metabolism enzymes, and drug efflux pumps.ConclusionsThis is the first study to our knowledge to demonstrate that biallelic inactivation of KEAP1 is a frequent genetic alteration in NSCLC. Loss of KEAP1 function leading to constitutive activation of NRF2-mediated gene expression in cancer suggests that tumor cells manipulate the NRF2 pathway for their survival against chemotherapeutic agents.
We performed a comprehensive survey of commonly inactivated tumor suppressor genes in esophageal squamous cell carcinoma (ESCC) based on functional reactivation of epigenetically silenced tumor suppressor genes by 5-aza-2'-deoxycytidine and trichostatin A using microarrays containing 12599 genes. Among 58 genes identified by this approach, 44 (76%) harbored dense CpG islands in the promoter regions. Thirteen of twenty-two tested gene promoters were methylated in cell lines, and ten in primary ESCC accompanied by silencing at the mRNA level. Potent growth suppressive activity of three genes including CRIP-1, Apolipoprotein D, and Neuromedin U in ESCC cells was demonstrated by colony focus assays. Pharmacologic reversal of epigenetic silencing is a powerful approach for comprehensive identification of tumor suppressor genes in human cancers.
Integration of PDX models as a preclinical platform for assessment of drug efficacy may allow a higher success-rate in critical end points of clinical benefit.
Purpose: Promoter hypermethylation is an alternative pathway for gene silencing in neoplastic cells and a promising cancer detection marker. Although quantitative methylation-specific PCR (QMSP) of the GSTP1 promoter has demonstrated near perfect specificity for cancer detection in prostate biopsies, we postulated that identification and characterization of additional methylation markers might further improve its high (80 -90%) sensitivity.Experimental Design: We surveyed nine gene promoters (GSTP1, MGMT, p14/ARF, p16/CDKN2A, RASSF1A, APC, TIMP3, S100A2, and CRBP1) by QMSP in tissue DNA from 118 prostate carcinomas, 38 paired high-grade prostatic intraepithelial neoplasias (HGPIN), and 30 benign prostatic hyperplasias (BPH). The methylation levels were calculated and were correlated with clinical and pathologic indicators.Results: Only the methylation frequencies of GSTP1 and APC were significantly higher in prostate carcinoma compared with BPH (P < 0.001). Methylation levels of GSTP1, APC, RASSF1A, and CRBP1, differed significantly between prostate carcinoma and HGPIN, and/or HGPIN or BPH (P < 0.0001).With QMSP and empirically defined cutoff values, the combined use of GSTP1 and APC demonstrated a theoretical sensitivity of 98.3% for prostate carcinoma, with 100% specificity. Methylation levels were found to correlate with tumor grade (GSTP1 and APC) and stage (GSTP1, RASSF1A, and APC).Conclusions: Our data demonstrate the existence of a progressive increase of promoter methylation levels of several cancer-related genes in prostate carcinogenesis, providing additional markers to augment molecular detection of prostate carcinoma. Because methylation levels of GSTP1, APC, and RASSF1A are associated with advanced grade and stage, QMSP might augment the pathologic indicators currently used to predict tumor aggressiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.