This challenging reservoir characterization case study is defined by the interaction between two reservoirs with different production mechanisms: a fractured basement reservoir and an overlying sandstone reservoir. The existing static geologic concept has been significantly enhanced by integrating pressure data from a unique three-year shut-in period to aid modeling of fractured reservoir connectivity. Previously, the seismic dataset was predominantly used to model the fault and fracture network and guide well planning. In the current approach, the full field data set, including all drilling parameters and new reservoir surveillance data were integrated to address uncertainty in the connected hydrocarbon volume and the relative importance of each production mechanism. The result is a reservoir management tool with which to test re-development concepts and effectively manage pressure decline and increasing gas/oil ratio (GOR) and water production. To achieve a fully integrated history matched model, the first step was to make a thorough review of the existing detailed seismic interpretation, vintage production logging tool runs (PLT's), wireline logs (including borehole image logs (BHI)) and drilling data to find a causal link between hydraulically conductive fractures and well production behavior. In parallel, a material balance exercise was run to incorporate the new pressure data acquired during the field's shut-in period. The results of the material balance analysis were combined with seismic and well data to define the distribution of connected fractures across the field. Additionally, the material balance analysis was used to determine the connected hydrocarbon volume, the distribution of initial oil in-place and the relative hydrocarbon contribution from each production mechanism. The field is covered by multi-azimuth 3D seismic and 43 vertical to highly deviated development wells, providing significant static and dynamic data for characterizing the distribution of connected fractures. Despite this high quality, diverse and field-wide dataset, prior modeling iterations struggled to sufficiently describe the production behavior seen at the well level. This has resulted in a major challenge to predicting the production behavior of new development wells and planning for reservoir management challenges. Capturing the complex interaction between production variables (including lithology, matrix versus fracture network, geomechanical stresses, reservoir damage and pressure depletion) at a field level instead of at an individual well level resulted in a unified static and dynamic model that reconciles all scales of observation. This oilfield represents a unique reservoir characterization opportunity. The result is a key example of how iterative, integrated geological and engineering driven reservoir modeling can be used to inform the development in a complex, mature field. This case study provides an excellent analogue for the reservoir characterization of other fractured Basement fields and/or Basement-cover reservoir couplet fields in the early to late phases of their development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.