A novel calibration process of RICOH-THETA, full-view fisheye camera, is proposed which has numerous applications as a low cost sensor in different disciplines such as photogrammetry, robotic and machine vision and so on. Ricoh Company developed this camera in 2014 that consists of two lenses and is able to capture the whole surrounding environment in one shot. In this research, each lens is calibrated separately and interior/relative orientation parameters (IOPs and ROPs) of the camera are determined on the basis of designed calibration network on the central and side images captured by the aforementioned lenses. Accordingly, designed calibration network is considered as a free distortion grid and applied to the measured control points in the image space as correction terms by means of bilinear interpolation. By performing corresponding corrections, image coordinates are transformed to the unit sphere as an intermediate space between object space and image space in the form of spherical coordinates. Afterwards, IOPs and EOPs of each lens are determined separately through statistical bundle adjustment procedure based on collinearity condition equations. Subsequently, ROPs of two lenses is computed from both EOPs. Our experiments show that by applying 3*3 free distortion grid, image measurements residuals diminish from 1.5 to 0.25 degrees on aforementioned unit sphere.
Deformation monitoring of structures is a common application and one of the major tasks of engineering surveying. Terrestrial laser scanning (TLS) has become a popular method for detecting deformations due to high precision and spatial resolution in capturing a number of three-dimensional point clouds. Surface-based methodology plays a prominent role in rigorous deformation analysis. Consequently, it is of great importance to select an appropriate regression model that reflects the geometrical features of each state or epoch. This paper aims at providing the practitioner some guidance in this regard. Different from standard model selection procedures for surface models based on information criteria, we adopted the hypothesis tests from D.R. Cox and Q.H. Vuong to discriminate statistically between parametric models. The methodology was instantiated in two numerical examples by discriminating between widely used polynomial and B-spline surfaces as models of given TLS point clouds. According to the test decisions, the B-spline surface model showed a slight advantage when both surface types had few parameters in the first example, while it performed significantly better for larger numbers of parameters. Within B-spline surface models, the optimal one for the specific segment was fixed by Vuong's test whose result was quite consistent with the judgment of widely used Bayesian information criterion. The numerical instabilities of B-spline models due to data gap were clearly reflected by the model selection tests, which rejected inadequate B-spline models in another numerical example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.