The upcoming fifth generation (5G) of wireless networks is expected to lay a foundation of intelligent networks with the provision of some isolated artificial intelligence (AI) operations. However, fully intelligent network orchestration and management for providing innovative services will only be realized in Beyond 5G (B5G) networks. To this end, we envisage that the sixth generation (6G) of wireless networks will be driven by on-demand self-reconfiguration to ensure a many-fold increase in the network performance and service types. The increasingly stringent performance requirements of emerging networks may finally trigger the deployment of some interesting new technologies, such as large intelligent surfaces, electromagnetic-orbital angular momentum, visible light communications, and cell-free communications, to name a few. Our vision for 6G is a massively connected complex network capable of rapidly responding to the users' service calls through real-time learning of the network state as described by the network edge (e.g., base-station locations and cache contents), air interface (e.g., radio spectrum and propagation channel), and the user-side (e.g., battery-life and locations). The multi-state, multi-dimensional nature of the network state, requiring the real-time knowledge, can be viewed as a quantum uncertainty problem. In this regard, the emerging paradigms of machine learning (ML), quantum computing (QC), and quantum ML (QML) and their synergies with communication networks can be considered as core 6G enablers. Considering these potentials, starting with the 5G target services and enabling technologies, we provide a comprehensive review of the related state of the art in the domains of ML (including deep learning), QC, and QML and identify their potential benefits, issues, and use cases for their applications in the B5G networks. Subsequently, we propose a novel QC-assisted and QML-based framework for 6G communication networks while articulating its challenges and potential enabling technologies at the network infrastructure, network edge, air interface, and user end. Finally, some promising future research directions for the quantum-and QML-assisted B5G networks are identified and discussed.
The advent of the Internet of Things has witnessed tremendous success in the application of wireless sensor networks and ubiquitous computing for diverse smart-based applications. The developed systems operate under different technologies using different methods to achieve their targeted goals. In this treatise, we carried out an inclusive survey on key indoor technologies and techniques, with to view to explore their various benefits, limitations, and areas for improvement. The mathematical formulation for simple localization problems is also presented. In addition, an empirical evaluation of the performance of these indoor technologies is carried out using a common generic metric of scalability, accuracy, complexity, robustness, energy-efficiency, cost and reliability. An empirical evaluation of performance of different RF-based technologies establishes the viability of Wi-Fi, RFID, UWB, Wi-Fi, Bluetooth, ZigBee, and Light over other indoor technologies for reliable IoT-based applications. Furthermore, the survey advocates hybridization of technologies as an effective approach to achieve reliable IoT-based indoor systems. The findings of the survey could be useful in the selection of appropriate indoor technologies for the development of reliable real-time indoor applications. The study could also be used as a reliable source for literature referencing on the subject of indoor location identification.
In a number of wireless communication applications, the impulse response of multipath communication channels has sparse nature. In this study, physical model for various propagation environments exhibiting sparse channel structure is considered. A superimposed (SI) training-based compressed channel sensing (SI-CCS) technique is proposed for such sparse multipath channels. A non-random periodic pilot sequence is SI over the information sequence at the transmitter, which avoids the use of dedicated time slots for training sequence. At the receiver, first-order statistics and the theory of compressed sensing is applied to estimate the wireless communication channels with sparse impulse response. A simulation analysis is presented to demonstrate the effectiveness of the proposed-channel estimation technique, where mean-square error and biterror rate are used as the performance measures. Exploiting the proposed SI-CCS technique, the simulation results along with the observations are presented, which illustrate the effect of various channel parameters on the performance of the proposed technique. Furthermore, obtained simulation results for the proposed SI-CCS technique along with its comparison with other techniques in literature are also presented. It is established that for the cases of sparse multipath channels, the proposed SI-CCS technique can potentially achieve significant improvement in the performance of channel estimator over the existing estimation techniques of such sparse channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.