Realization of fractional-order double-scroll chaotic system using Operational Transconductance Amplifiers (OTAs) as active elements are presented in this paper. The fractional-order double-scroll chaotic system has been studied before as well using passive RC-ladder and tree-based structures but in this paper the requisite fractional-order integration has been accomplished through an integer-order multiple-feedback topology. As compared to double or multiple scroll chaotic systems existing in the open literature, the proposed realization offers the advantages of (a) low-voltage implementation, (b) integrablity as the design is resistor- and inductor-less and only grounded components have been employed in the design, and, (c) electronic tunability of the fractional order, time-constants and gain factors. In order to demonstrate the usefulness of the chaotic system, a simple secure message communication system has been designed and verified for its operation. The theoretical predictions of the proposed implementations have been verified by using 0.35[Formula: see text][Formula: see text]m complementary metal oxide semiconductor (CMOS) process file provided by Austrian Micro System (AMS).
Some neurons like neocortical pyramidal neurons adapt with multiple timescales , which is consistent with fractionalorder differentiation. The fractional-order neuron models are therefore believed to portray the firing rate of neurons more accurately than their integer-order models. It has been studied that as the fractional order of differentiator and integrator involved in the neuron model decreases, bursting frequency of the neurons increases. The opposite effect has been observed on increasing the external excitation. In this study, integer-and fractional-order Hindmarsh-Rose (HR) neuron models have been implemented using sinh companding technique. Besides, the application of the HR neuron model in a simple network of two neurons has also been considered. The designs offer a low-voltage and low-power implementation along with the electronic tunability of the performance characteristics. Due to the use of only metal-oxide semiconductor (MOS) transistors and grounded capacitors, the proposed implementation can be integrated in chip form. On comparing with existing implementations, the implemented fractional-order and integer-order models show a better performance in terms of power consumption, supply voltage, order and flexibility. The performance of the circuits has been verified using 130 nm complementary MOS (CMOS) technology process provided by Austrian Micro Systems using HSPICE simulation software.
In this paper, electronic implementation of fractional-order Rössler system using operational transconductance amplifiers (OTAs) is presented which until now was only being investigated through numerical simulations. The realization offers the benefits of low-voltage implementation, integrability and electronic tunability. In addition, the proposed circuit is a MOS only design (as no BJTs have been used) which contains only grounded components and is therefore suitable for monolithic VLSI design. The chaotic behavior of the fractional-order Rössler system in consideration with the incommensurate orders has been demonstrated which finds many applications in several fields. The theoretical predictions of the proposed implementation have been verified through experimentation and HSPICE simulator using Austrian Micro System (AMS) 0.35[Formula: see text][Formula: see text]m CMOS process and the obtained results have been found in good agreement with the Matlab simulink theoretical results obtained using FOMCON simulink toolbox. Besides, a secure message communication system has been considered to demonstrate fully the usefulness of the chaotic system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.