Liquid metals (LMs) are electronic liquid with enigmatic interfacial chemistry and physics. These features make them promising materials for driving chemical reactions on their surfaces for designing nanoarchitectonic systems. Herein, we showed the interfacial interaction between eutectic gallium−indium (EGaIn) liquid metal and graphene oxide (GO) for the reduction of both substrate-based and free-standing GO. NanoIR surface mapping indicated the successful removal of carbonyl groups. Based on the gained knowledge, a composite consisting of assembled reduced GO sheets on LM microdroplets (LM−rGO) was developed. The LM enforced Ga 3+ coordination within the rGO assembly found to modify the electrochemical interface for selective dopamine sensing by separating the peaks of interfering biologicals. Subsequently, paper-based electrodes were developed and modified with the LM−rGO that presented the compatibility of the assembly with low-cost commercial technologies. The observed interfacial interaction, imparted by LM's interfaces, and electrochemical performance observed for LM−rGO will lead to effective functional materials and electrode modifiers.
Over the past decades, paper-based lateral flow immunoassays (LFIAs) have been extensively developed for rapid, facile, and low-cost detection of a wide array of target analytes in a point-of-care manner. Conventional home pregnancy tests are the most significant example of LFAs, which detect elevated concentrations of human chorionic gonadotrophin (hCG) in body fluids to identify early pregnancy. In this work, we have upgraded these platforms to a higher version by developing a customized microfluidic paper-based analytical device (μPAD), as the new generation of paper-based point-of-care platforms, for colorimetric immunosensing. This will offer a cost-efficient and environmentally friendly alternative platform for paper-based immunosensing, eliminating the need for nitrocellulose (NC) membrane as the substrate material. The performance of the developed platform is demonstrated by detection of hCG (as a model case) in urine samples and subsequently indicating positive or negative pregnancy. A dual-functional silane-based composite was used to treat filter paper in order to enhance the colorimetric signal intensity in the detection zones of μPADs. In addition, microfluidic pathways were designed in a manner to provide the desired regulated fluid flow, generating sufficient incubation time (delays) at the designated detection zones, and consequently enhancing the obtained signal intensity. The presented approaches allow to overcome the existing limitations of μPADs in immunosensing and will broaden their applicability to a wider range of assays. Although, the application of the developed hCG μPAD assay is mainly in qualitative (i.e., positive or negative) detection of pregnancy, the semi-quantitative measurement of hCG was also investigated, indicating the viability of this assay for sensitive detection of the target hCG analyte within the related physiological range (i.e., 10–500 ng/mL) with a LOD value down to 10 ng/mL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.