In the new competitive electricity markets, the necessity of appropriate load forecasting tools for accurate scheduling is completely evident. The model which is utilised for the forecasting purposes determines how much the forecasted results would be dependable. In this regard, this paper proposes a new hybrid forecasting method based on the wavelet transform, autoregressive integrated moving average (ARIMA) and artificial neural network (ANN) for short-term load forecasting. In the proposed model, the autocorrelation function and the partial autocorrelation function are utilised to see the stationary or non-stationary behaviour of the load time series. Then, by the use of Akaike information criterion, the appropriate order of the ARIMA model is found. Now, the ARIMA model would capture the linear component of the load time series and the residuals would contain only the nonlinear components. The nonlinear part would be decomposed by the discrete wavelet transform into its sub-frequencies. Several ANNs are applied to the details and approximation components of the residuals signal to predict the future load sample. Finally, the outputs of the ARIMA and ANNs are summed. The empirical results show that the proposed hybrid method can improve the load forecasting accuracy suitably.
Optimal distribution feeder reconfiguration (DFR) is a valuable and costless approach to increase the load balance, reduce the amount of power losses, and improve the voltage of the buses. In this way, this paper aims to investigate the optimal DFR strategy as a proper tool to improve the reliability of the radial distribution networks. The idea of failure rate reduction is employed to see the effect of feeder current reduction on the reliability of the system more accurately. The objects to be investigated are system average interruption frequency index (SAIFI), system average interruption duration index (SAIDI), average energy not supplied (AENS) and total active power losses. The problem is then formulated in a stochastic framework based on the point estimate method (PEM) to handle the uncertainty effects. The feasibility and satisfying performance of the proposed method is examined on a standard IEEE test system.
Coagulation-flocculation is the most important parts of water treatment process. Traditionally, optimum pre coagulant dosage is determined by used jar tests in laboratory. However; jar tests are time-consuming, expensive, and less adaptive to changes in raw water quality in real time. Soft computing can be used to overcome these limitations. In this paper, multi-objective evolutionary Pareto optimal design of GMDH Type-Neural Network has been used for modeling and predicting of optimum poly electrolyte dosage in Rasht WTP, Guilan, Iran, using Input -output data sets. In this way, multi-objective uniform-diversity genetic algorithms (MUGA) are then used for Pareto optimization of GMDH networks. In order to achieve this modeling, the experimental data were divided into train and test sections. The predicted values were compared with those of experimental values in order to estimate the performance of the GMDH network. Also, Multi Objective Genetic Algorithms (MOGA) are then used for optimization of influence parameters in pre coagulant (Poly electrolyte) dosage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.