Background: The severe acute respiratory syndrome (SARS) is a life threatening viral infection caused by a positive, single stranded RNA virus from the enveloped coronaviruse family. Associated with fever, cough, and respiratory complications, the illness causes more than 15% mortality worldwide. So far, there is no remedy for the illness except supportive treatments. However, the main viral proteinase has recently been regarded as a suitable target for drug design against SARS infection due to its vital role in polyproteins processing necessary for coronavirus reproduction. Objectives: The present in silico study was designed to evaluate the effects of anti HIV-1 proteases inhibitors, approved for clinical applications by US FDA, on SARS proteinase inhibition. Methods: In the present study, docking and molecular dynamic experiments were applied to examine the effect of inhibitors on coronavirus proteinase under physiological conditions of similar pH, temperature, and pressure in aqueous solution. Hex software version 5.1 and GROMACS 4.5.5 were used for docking analysis throughout this work.
Results:The calculated parameters such as RMSD, RMSF, MSD, dipole moment, diffusion coefficient, binding energy, and binding site similarity indicated effective binding of inhibitors to SARS proteinase resulting in their structural changes, which coincide with proteinase inhibition.
Conclusions:The inhibitory potency of HIV 1 protease inhibitors to cronovirus proteinase was as follows: LPV > RTV > APV > TPV > SQV. Lopinavir and Saquinavir were the most and the least powerful inhibitors of cronovirus proteinase, respectively.
Band assignment for oxy, deoxy and methemoglobin using orbital promotion is crucial to understanding inter-relation of electronic transitions. Spectral changes may be correlated with conformational alteratiions. Conformational changes of hemoglobin were interpreted using four-orbital model of Gouterman. Our results indicated that Goutherman model can predict the predominant conformations of hemoglobin.
The disease of COVID-19 comprises the most serious against human health worldwide with a high rate of virulence and mortality. The disease is caused by the 2019-nCoV virus from the beta coronavirus family. The virus makes use of its surface glycoprotein named S protein or spike to enter the human cells. The virus attached to its receptor named angiotensin-converting enzyme 2 on host cells surface via its receptor-binding domain and its fusion is mediated by cleavage at S2' site that is carried out by surface protease. Vaccines or drugs interfering with S protein binding or cleavage sites could be considered as drugs to get rid of the infection. In the current work and though docking and molecular dynamic experiments we have checked more than 100 drugs with high enough molecular weights for their shielding potency toward S protein binding sites and processing S2' sites. Our results indicate the shielding potency of: fidaxomicin > ivermectin > heparin > azithromycin > clarithromycin > eryhthromycin > niclosamide > ritonavir. Considering affluent reports regarding the complex disturbance in the immune system and multi-organ involvement in the disease there is no single or binary drug regime for cure expectedly and instead, we claim the multi-drug regime should be the choice in this context. Accordingly, we suggest our extracted drugs as an adjuvant for clinical trials.
In the present study, the effects of administrating 4 mM and 300 mg kg(-1) b.wt. of quinolinic acid were studied, in vitro and in vivo, respectively, to evaluate its inhibitory activity on phosphoenolpyruvate carboxykinase in diabetic rats. The results of in vitro studies have clearly indicated the inhibitory effect of quinolinic acid on enzyme activity. The hill plot showed the binding stoichiometry of quinolinic acid per enzyme to be 4:1. The in vivo studies showed that intra peritoneal injection of 300 mg kg(-1) b.wt. initiates reduction of blood glucose level in 1 h after injection, restoring the blood glucose to its normal level at 2 h post injection and keeping it constant for at least further 4 h. Based on present results we concluded that quinolinic acid and hence its precursor tryptophan having induced obvious hypoglycemic effects in normal and diabetic rats at high enough concentrations, they are worthy of further study and research for their hyperglycemic effect in other diabetic animal models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.