The Mycobacteriaceae constitute a family of varied Gram-positive organisms that include a large number of pathogenic bacteria. Among these, non-tuberculous mycobacteria are endemic worldwide and have been associated with infections in a large number of organisms, including humans and other mammals and reptiles, as well as fish. In this review, we summarize the most recent findings regarding this group of pathogens in fish. There, four species are most commonly associated with disease outbreaks: Mycobacterium marinum, the most common of these fish mycobacterial pathogens, Mycobacterium fortuitum, Mycobacterium gordonae, and Mycobacterium chelonae. These bacteria have a broad host range: they are zoonotic, and infections have been reported in a large number of fish species. The main route of entry of the bacterium into the fish is through the gastrointestinal route, and the disease is associated with ulcerative dermatitis as well as organomegaly and the development of granulomatous lesions in the internal organs. Mycobacteriaceae are slow-growing and fastidious and isolation is difficult and time consuming and diagnostic is mostly performed using serological and molecular tools. Control of the disease is also difficult: there is currently no effective vaccine and infections react poorly to antibiotherapy. For this reason, more research is needed on the subject of these vexing pathogens.
Renibacterium salmoninarum is one of the oldest known bacterial pathogens of fish. This Gram-positive bacterium is the causative agent of bacterial kidney disease, a chronic infection that is mostly known to infect salmonid fish at low temperatures. Externally, infected fish can display exophthalmia as well as blebs on the skin and ulcerations alongside haemorrhages at the base of the fins and alongside the lateral line. Internally, the kidney, heart, spleen and liver can show signs of swelling. Granulomas can be seen on various internal organs, as can haemorrhages, and the organs can be covered with a false membrane. Ascites can also accumulate in the abdominal cavity. The bacterium is generally cultivated on specialized media such as kidney disease medium-1 (KDM-1), KDM-2 and selective kidney disease medium (SKDM), and a diagnostic is performed using molecular tools such as PCRs or real-time quantitative PCRs (RT-qPCRs). Several virulence mechanisms have been identified in R. salmoninarum, in particular the protein p57 that is known to play a role in both agglutination and immunosuppression of the host’s defense mechanisms. Control of the disease is difficult; the presence of asymptomatic carriers complicates the eradication of the disease, as does the ability of the bacterium to gain entrance inside the eggs. Bacterin-killed vaccines have proven to be of doubtful efficacy in controlling the disease, and even more recent application of a virulent environmental relative of R. salmoninarum is of limited efficacy. Treatment by antibiotics such as erythromycin, azithromycin and enrofloxacin can be effective but it is slow and requires prolonged treatment. Moreover, antibiotic-resistant strains have been reported. Despite being known for a long time, there is still much to be discovered about R. salmoninarum, notably regarding its virulence mechanisms and its vaccine potential. Consequently, these gaps in knowledge continue to hinder control of this bacterial disease in aquaculture settings.
Background: Renibacterium salmoninarum and Mycobacterium sp. are important bacterial pathogens of fish. R. salmoninarum is the causative agent of bacterial kidney disease, a Gram-positive bacterium mostly known for causing chronic infections in salmonid fish, while multiple species belonging to the Mycobacterium genus have been associated with mycobacteriosis in fish as well as in human. The objective of this study was to determine the prevalence of these two bacterial pathogens in populations of wild brown trout (Salmo trutta fario) in four rivers (Kamp, Wulka, Traun and Ybbs) in Austria. Results: A total of 457 kidney samples were examined for both bacterial agents using nested and conventional PCR as well as bacterial cultivation on KDM-2, histological examination and immunohistochemistry. Molecular evidence showed an estimated prevalence level of 0.94% for R. salmoninarum in 2017 while the bacterium could not be detected in 2018 and histology showed signs consistent with a low-level chronic inflammation in the kidney of infected fish. Similarly, no fish were found positive for Mycobacterium in 2017 but in 2018, the prevalence was found to be 37.03% in the Kamp river (4.08% across all rivers). The sequencing data confirmed that these fish carried Mycobacterium sp. although the precise species of Mycobacterium could not be ascertained. Conclusions: This survey constitutes the first insight into the prevalence rate of R. salmoninarum and Mycobacterium sp. in wild brown trout (Salmo trutta fario) populations in Austria. Both of these pathogens were only detected in the summer months (June and July), which might suggest that the stress linked to increased water temperature could act as stressor factor and contribute to the outbreak of these diseases. The age of the fish might also play a role, especially in the case of Mycobacterium sp. as all the infected fish were in their first summer (June).
Nontuberculous mycobacteria constitute a subgroup among the Mycobacterium genus, a genus of Gram-positive bacteria that includes numerous pathogenic bacteria. In the present study, Mycobacterium spp. were detected in natural water samples from two Austrian rivers (Kamp and Wulka) using three different primers and PCR procedures for the identification of the 16S rRNA and hsp65 genes. Water samples were collected from the Kamp (45 samples) and Wulka (25 samples) in the summer and winter of 2018 and 2019. Molecular evidence showed a high prevalence of Mycobacterium sp. in these rivers with prevalence rates estimated at approximately 94.3% across all rivers. The present study represents the first survey into the prevalence of Mycobacterium sp. in natural water in Austria. Because nontuberculous mycobacteria have known pathogenic potential, including zoonotic, these findings may have implications for health management and public health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.