Collagen, a molecule consisting of three braided protein helices, is the primary building block of many biological tissues including bone, tendon, cartilage, and skin. Staggered arrays of collagen molecules form fibrils, which arrange into higher-ordered structures such as fibers and fascicles. Because collagen plays a crucial role in determining the mechanical properties of these tissues, significant theoretical research is directed toward developing models of the stiffness, strength, and toughness of collagen molecules and fibrils. Experimental data to guide the development of these models, however, are sparse and limited to small strain response. Using a microelectromechanical systems platform to test partially hydrated collagen fibrils under uniaxial tension, we obtained quantitative, reproducible mechanical measurements of the stress-strain curve of type I collagen fibrils, with diameters ranging from 150-470 nm. The fibrils showed a small strain (epsilon < 0.09) modulus of 0.86 +/- 0.45 GPa. Fibrils tested to strains as high as 100% demonstrated strain softening (sigma(yield) = 0.22 +/- 0.14 GPa; epsilon(yield) = 0.21 +/- 0.13) and strain hardening, time-dependent recoverable residual strain, dehydration-induced embrittlement, and susceptibility to cyclic fatigue. The results suggest that the stress-strain behavior of collagen fibrils is dictated by global characteristic dimensions as well as internal structure.
Mechanical testing of collagenous tissues at different length scales will provide improved understanding of the mechanical behavior of structures such as skin, tendon, and bone, and also guide the development of multiscale mechanical models. Using a microelectromechanical-systems (MEMS) platform, stress-strain response curves up to failure of type I collagen fibril specimens isolated from the dermis of sea cucumbers were obtained in vitro. A majority of the fibril specimens showed brittle fracture. Some displayed linear behavior up to failure, while others displayed some nonlinearity. The fibril specimens showed an elastic modulus of 470 ± 410 MPa, a fracture strength of 230 ± 160 MPa, and a fracture strain of 80% ± 44%. The fibril specimens displayed significantly lower elastic modulus in vitro than previously measured in air. Fracture strength/strain obtained in vitro and in air are both significantly larger than those obtained in vacuo, indicating that the difference arises from the lack of intrafibrillar water molecules produced by vacuum drying. Furthermore, fracture strength/strain of fibril specimens were different from those reported for collagenous tissues of higher hierarchical levels, indicating the importance of obtaining these properties at the fibrillar level for multiscale modeling.
We demonstrate an innovative variable-focus flat liquid-crystal diffractive lens (LCDL) with 95% diffraction efficiency and millisecond switching times using a +/-2.4 V ac input. This lens is based on the electrical modulation of a 3 mum layer of nematic liquid-crystal sandwiched between a Fresnel zone electrode structure and a reference substrate. Each zone is divided into 12 subzones to digitize the phase profiles and define the phase wrapping points. The focusing power can rapidly be switched by electrically changing the number of subzones and re-establishing the wrapping points. Potential applications include zooms with no moving parts and autofocus lenses for compact imaging devices.
We report on a novel zoom lens with no moving parts in the form of a switchable Galilean telescope. This zoom telescope consists of two flat liquid-crystal diffractive lenses with apertures of 10mm that can each take on the focal lengths of -50 and +100cm, with a spacing of 50cm and, hence, a zoom ratio of 4x. The lenses are driven using a low-voltage ac source with 1.6V and exhibit millisecond switching times. The spectral characteristic of this diffractive zoom system is evaluated for light sources of various bandwidths. Potential applications for this technology include a zoom lens with no moving parts for camera phones and medical imaging devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.