PurposeEvery day, small and big incidents happen all over the world, and given the human, financial and spiritual damage they cause, proper planning should be sought to deal with them so they can be appropriately managed in times of crisis. This study aims to examine humanitarian supply chain models.Design/methodology/approachA new model is developed to pursue the necessary relations in an optimal way that will minimize human, financial and moral losses. In this developed model, in order to optimize the problem and minimize the amount of human and financial losses, the following subjects have been applied: magnitude of the areas in which an accident may occur as obtained by multiple attribute decision-making methods, the distances between relief centers, the number of available rescuers, the number of rescuers required and the risk level of each patient which is determined using previous data and machine learning (ML) algorithms.FindingsFor this purpose, a case study in the east of Tehran has been conducted. According to the results obtained from the algorithms, problem modeling and case study, the accuracy of the proposed model is evaluated very well.Originality/valueObtaining each injured person's priority using ML techniques and each area's importance or risk level, besides developing a bi-objective mathematical model and using multiple attribute decision-making methods, make this study unique among very few studies that concern ML in the humanitarian supply chain. Moreover, the findings validate the results and the model's functionality very well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.