This paper presents a mathematical model for an inventory control system in which customers' demands and suppliers' service time are considered as stochastic parameters. The proposed problem is solved through queuing theory for a single item. In this case, transitional probabilities are calculated in steady state. Afterward, the model is extended to the case of multi-item inventory systems. Then, to deal with the complexity of this problem, a new heuristic algorithm is developed. Finally, the presented bi-level inventory-queuing model is implemented as a case study in Electroestil Company.
Nowadays, companies offer product bundles with special discounts in order to sell more products. However, it is important to note that customers show different levels of loyalties to companies, and each segment of the market has unique features, which influences the customers' buying patterns. The primary purpose of this paper is to propose a novel model for product bundling in e-commerce websites by using market segmentation variables and customer loyalty analysis. RFM model is employed to calculate customer loyalty. Subsequently, the customers are grouped based on their loyalty levels. Each group is then divided into different segments based on market segmentation variables. The product bundles are determined for each market segment via clustering algorithms. Apriori algorithm is also used to determine the association rules for each product bundle. Classification models are applied in order to determine which product bundle should be recommended to each customer. The results demonstrate that the silhouette coefficient, support, confidence, and accuracy values are higher when both customer loyalty level and market segmentation variables are used in product bundling. Accordingly, the proposed model increases the chance of success in direct marketing and recommending product bundles to customers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.