Stroma in the tumor microenvironment plays a critical role in cancer progression, but how it promotes metastasis is poorly understood. Exosomes are small vesicles secreted by many cell types and enable a potent mode of intercellular communication. Here, we report that fibroblast-secreted exosomes promote breast cancer cell (BCC) protrusive activity and motility via Wnt-planar cell polarity (PCP) signaling. We show that exosome-stimulated BCC protrusions display mutually exclusive localization of the core PCP complexes, Fzd-Dvl and Vangl-Pk. In orthotopic mouse models of breast cancer, coinjection of BCCs with fibroblasts dramatically enhances metastasis that is dependent on PCP signaling in BCCs and the exosome component, Cd81 in fibroblasts. Moreover, we demonstrate that trafficking in BCCs promotes tethering of autocrine Wnt11 to fibroblast-derived exosomes. This work reveals an intercellular communication pathway whereby fibroblast exosomes mobilize autocrine Wnt-PCP signaling to drive BCC invasive behavior.
The gut epithelium has remarkable self-renewal capacity that under homeostatic conditions is driven by Wnt signalling in Lgr5(+) intestinal stem cells (ISCs). However, the mechanisms underlying ISC regeneration after injury remain poorly understood. The Hippo signalling pathway mediates tissue growth and is important for regeneration. Here we demonstrate in mice that Yap, a downstream transcriptional effector of Hippo, is critical for recovery of intestinal epithelium after exposure to ionizing radiation. Yap transiently reprograms Lgr5(+) ISCs by suppressing Wnt signalling and excessive Paneth cell differentiation, while promoting cell survival and inducing a regenerative program that includes Egf pathway activation. Accordingly, growth of Yap-deficient organoids is rescued by the Egfr ligand epiregulin, and we find that non-cell-autonomous production of stromal epiregulin may compensate for Yap loss in vivo. Consistent with key roles for regenerative signalling in tumorigenesis, we further demonstrate that Yap inactivation abolishes adenomas in the Apc(Min) mouse model of colon cancer, and that Yap-driven expansion of Apc(-/-) organoids requires the Egfr module of the Yap regenerative program. Finally, we show that in vivo Yap is required for progression of early Apc mutant tumour-initiating cells, suppresses their differentiation into Paneth cells, and induces a regenerative program and Egfr signalling. Our studies reveal that upon tissue injury, Yap reprograms Lgr5(+) ISCs by inhibiting the Wnt homeostatic program, while inducing a regenerative program that includes activation of Egfr signalling. Moreover, our findings reveal a key role for the Yap regenerative pathway in driving cancer initiation.
The aim of our study was to investigate the importance of pulmonary distension and fetal breathing-like movements executed by the contractile activity of the intercostal respiratory muscles for proper lung growth and maturation. Lung development in Myf5؊/؊ embryos, lacking the rib cage and functional intercostal musculature, was compared with wild-type controls at embryonic days 14.5, 16.5, and 18.5. Our data revealed that Myf5؊/؊ embryos suffered from pulmonary hypoplasia in part due to the decreased number of proliferating lung cells and in part due to the increased number of terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) -positive cells. In addition, the proximal-to-distal expression gradient of thyroid transcription factor-1 observed in wild-type embryos was not maintained in Myf5؊/؊ embryos. The number of lung cells expressing platelet-derived growth factor-BB, its receptor and insulin growth factor-I was significantly decreased in the hypoplastic lung. By contrast, no difference in the expression pattern of surfactant associated proteins or Clara cells marker was detected between wild-type and Myf5؊/؊ embryos. Collectively, our data suggest that the mechanochemical signal transduction pathway used in vitro is also effective in vivo influencing lung growth but not lung cell maturation and resulting in lung hypoplasia. These data affirm the role of fetal breathing-like movements in lung organogenesis. Developmental Dynamics 232:43-54, 2005.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.