We address the problem
of intermolecular interaction energy calculations
in molecular complexes with localized excitons. Our focus is on the
correct representation of the dispersion energy. We derive an extended
Casimir-Polder formula for direct computation of this contribution
through second order in the intermolecular interaction operator
V̂
. An alternative formula, accurate to infinite order
in
V̂
, is derived within the framework of the
adiabatic connection (AC) theory. We also propose a new parametrization
of the VV10 nonlocal correlation density functional, so that it corrects
the CASSCF energy for the dispersion contribution and can be applied
to excited-state complexes. A numerical investigation is carried out
for benzene, pyridine, and peptide complexes with the local exciton
corresponding to the lowest π–π* or n– π*
states. The extended Casimir-Polder formula is implemented in the
framework of multiconfigurational symmetry-adapted perturbation theory,
SAPT(MC). A SAPT(MC) analysis shows that the creation of a localized
exciton affects mostly the electrostatic component of the interaction
energy of investigated complexes. Nevertheless, the changes in Pauli
repulsion and dispersion energies cannot be neglected. We verify the
performance of several perturbation- and AC-based methods. Best results
are obtained with a range-separated variant of an approximate AC approach
employing extended random phase approximation and CASSCF wave functions.
In this paper, we employ an evolutionary algorithm along with the full-potential density functional theory (DFT) computations to perform a comprehensive search for the stable structures of stoichiometric (WS) nano-clusters (n = 1 - 9), within three different exchange-correlation functionals. Our results suggest that n = 5 and 8 are possible candidates for the low temperature magic sizes of WS nano-clusters while at temperatures above 500 Kelvin, n = 7 exhibits a comparable relative stability with n = 8. The electronic properties and energy gap of the lowest energy isomers were computed within several schemes, including semilocal Perdew-Burke-Ernzerhof and Becke-Lee-Yang-Parr functionals, hybrid B3LYP functional, many body based DFT+GW approach, ΔSCF method, and time dependent DFT calculations. Vibrational spectra of the lowest lying isomers, computed by the force constant method, are used to address IR spectra and thermal free energy of the clusters. Time dependent density functional calculation in a real time domain is applied to determine the full absorption spectra and optical gap of the lowest energy isomers of the WS nano-clusters.
In this paper, we employ evolutionary algorithm along with the full-potential density functional theory (DFT) computations to perform a comprehensive search for the stable structures of stoichiometric (WS2)n nano-clusters (n = 1 − 9), within three different exchange-correlation functionals. Our results suggest that n = 3, 5, 8 are possible candidates for the low temperature magic sizes of WS2 nano-clusters while at temperatures above 600 Kelvin, n = 5 and 7 exhibit higher relative stability among the studied systems. The electronic properties and energy gap of the lowest energy isomers were computed within several schemes, including semilocal PBE and BLYP functionals, hybrid B3LYP functional, many body based DFT+GW approach, and time dependent DFT calculations. Vibrational spectra of the lowest lying isomers, computed by the force constant method, are used to address IR spectra and thermal free energy of the clusters. Time dependent density functional calculation in real time domain is applied to determine the full absorption spectra and optical gap of the lowest energy isomers of the WS2 nano-clusters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.