This paper applies the density matrix formalism to investigate a feasibility of inversionless terahertz (THz) lasing within a mid-infrared (mid-IR) quantum cascade laser (QCL). The proposed structure aims to use a mid-IR QCL as an efficient pump source that integrated with a four-level Raman-type scheme to generate THz radiation through strong coherence excited in the system. A key aspect of the design is that the THz generation is achieved by interplay between inversion-based lasing and coherent effects due to quantum interference between the microscopic polarizations of the dipole-allowed transitions in the four-level system. THz intensity gain arising from both the inversion-based lasing and coherent effects is derived from the off-diagonal density matrix elements in the four-level system. The simulation results indicate that the proposed design demonstrates the potential to achieve THz lasing with good temperature characteristics and without the need for population inversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.