On-line measurement of soil properties using the visible (Vis) and near infrared (NIR) spectroscopy is sensitive to soil-to-sensor distance (D) and angle () variations, which have prevented the successful development of on-line soil sensors so far. This study was undertaken to minimise these variations through optimising the three-point linkage of the tractor to improve the quality of soil spectra and the accuracy of plant available phosphorus (P-avl) measured with an on-line soil sensor. The sensor consisted of a tine, to the back of which an optical probe was attached to acquire soil spectra in diffusive reflectance mode from the bottom of the trench opened by the tine. A mobile, fibre-type, Vis-NIR spectrophotometer (Zeiss Corona 45 visnir fibre, Germany), with a measurement range of 306.5-1710.9 nm was used. Five lengths of the third point link (L) of the tractor of 545, 550, 555, 560 and 565 mm were selected to evaluate the quality of spectra collected on-line at 0.15 m tine depth. The on-line measured spectra were corrected to remove the effect of D and . The correction was evaluated by estimating the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.