Mineral deficiency limits crop production in most soils and in Asia alone, about 50% of rice lands are phosphorous deficient. In an attempt to determine the mechanism of rice adaptation to phosphorous deficiency, changes in proteome patterns associated with phosphorous deficiency have been investigated. We analyzed the parental line Nipponbare in comparison to its near isogenic line (NIL6-4) carrying a major phosphorous uptake QTL (Pup1) on chromosome 12. Using 2-DE, the proteome pattern of roots grown under 1 and 100 microM phosphorous were compared. Out of 669 proteins reproducibly detected on root 2-DE gels, 32 proteins showed significant changes in the two genotypes. Of them, 17 proteins showed different responses in two genotypes under stress condition. MS resulted in identification of 26 proteins involved in major phosphorous deficiency adaptation pathways including reactive oxygen scavenging, citric acid cycle, signal transduction, and plant defense responses as well as proteins with unknown function. Our results highlighted a coordinated response in NIL in response to phosphorous deficiency which may confer higher adaptation to nutrient deficiency.
Crop adaptation to abiotic stresses requires alterations in expression of a large number of stress protection genes and their regulators, including transcription factors. In this study, the expression levels of ten MYB transcription factor genes from wheat (Triticum aestivum) were examined in two recombinant inbred lines contrasting in their salt tolerance in response to salt or drought stress. Quantitative RT-PCR analysis revealed that four MYB genes were consistently up-regulated in the seedling roots of both genotypes under short-term salt treatment. Three MYB genes were found to be up-regulated in both genotypes under long-term salt stress. One MYB gene was up-regulated in both genotypes under both short- and long-term salt stress. Of these salt up-regulated MYB genes, one MYB gene (TaMYBsdu1) was markedly up-regulated in the leaf and root of wheat under long-term drought stress. In addition, TaMYBsdu1 showed higher expression levels in the salt-tolerant genotype than in the susceptible genotype under salt stress. These data suggest that TaMYBsdu1 is a potentially important regulator involved in wheat adaptation to both salt and drought stresses.
Background: Damask roses (Rosa damascena Mill.) are mainly used for essential oil production. Previous studies have indicated that all production material in Bulgaria and Turkey consists of only one genotype. Nine polymorphic microsatellite markers were used to analyze the genetic diversity of 40 accessions of R. damascena collected across major and minor rose oil production areas in Iran.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.