Hippocampus segmentation is a key step in the evaluation of mesial Temporal Lobe Epilepsy (mTLE) by MR images. Several automated segmentation methods have been introduced for medical image segmentation. Because of multiple edges, missing boundaries, and shape changing along its longitudinal axis, manual outlining still remains the benchmark for hippocampus segmentation, which however, is impractical for large datasets due to time constraints. In this study, four automatic methods, namely FreeSurfer, Hammer, Automatic Brain Structure Segmentation (ABSS), and LocalInfo segmentation, are evaluated to find the most accurate and applicable method that resembles the bench-mark of hippocampus. Results from these four methods are compared against those obtained using manual segmentation for T1-weighted images of 157 symptomatic mTLE patients. For performance evaluation of automatic segmentation, Dice coefficient, Hausdorff distance, Precision, and Root Mean Square (RMS) distance are extracted and compared. Among these four automated methods, ABSS generates the most accurate results and the reproducibility is more similar to expert manual outlining by statistical validation. By considering p-value<0.05, the results of performance measurement for ABSS reveal that, Dice is 4%, 13%, and 17% higher, Hausdorff is 23%, 87%, and 70% lower, precision is 5%, -5%, and 12% higher, and RMS is 19%, 62%, and 65% lower compared to LocalInfo, FreeSurfer, and Hammer, respectively.
Surgical treatment is suggested for seizure control in medically intractable epilepsy patients. Detailed pre-surgical evaluation and lateralization using Magnetic Resonance Images (MRI) is expected to result in a successful surgical outcome. In this study, an optimized pattern recognition approach is proposed for lateralization of mesial Temporal Lobe Epilepsy (mTLE) patients using asymmetry of imaging indices of hippocampus. T1-weighted and Fluid-Attenuated Inversion Recovery (FLAIR) images of 76 symptomatic mTLE patients are considered. First, hippocampus is segmented using automatic and manual segmentation methods; then, volumetric and intensity features are extracted from the MR images. A nonlinear Support Vector Machine (SVM) with optimized Gaussian Radial Basis Function (GRBF) kernel is used to classify the imaging features. Using leave-one-out cross validation, this method results in a correct lateralization rate of 82%, a probability of detection for the left side of 0.90 (with false alarm probability of 0.04) and a probability of detection for the right side of 0.69 (with zero false alarm probability). The lateralization results are compared to linear SVM, multi-layer perceptron Artificial Neural Network (ANN), and volumetry and FLAIR asymmetry analysis. This lateralization method is suggested for pre-surgical evaluation using MRI before surgical treatment in mTLE patients. It achieves a more correct lateralization rate and fewer false positives.
PurposeThis study systematically investigates the predictive power of volumetric imaging feature sets extracted from select neuroanatomical sites in lateralizing the epileptogenic focus in mesial temporal lobe epilepsy (mTLE) patients.MethodsA cohort of 68 unilateral mTLE patients who had achieved an Engel class I outcome postsurgically was studied retrospectively. The volumes of multiple brain structures were extracted from preoperative magnetic resonance (MR) images in each. The MR image data set consisted of 54 patients with imaging evidence for hippocampal sclerosis (HS-P) and 14 patients without (HS-N). Data mining techniques (i.e., feature extraction, feature selection, machine learning classifiers) were applied to provide measures of the relative contributions of structures and their correlations with one another. After removing redundant correlated structures, a minimum set of structures was determined as a marker for mTLE lateralization.ResultsUsing a logistic regression classifier, the volumes of both hippocampus and amygdala showed correct lateralization rates of 94.1%. This reflected about 11.7% improvement in accuracy relative to using hippocampal volume alone. The addition of thalamic volume increased the lateralization rate to 98.5%. This ternary-structural marker provided a 100% and 92.9% mTLE lateralization accuracy, respectively, for the HS-P and HS-N groups.ConclusionsThe proposed tristructural MR imaging biomarker provides greater lateralization accuracy relative to single- and double-structural biomarkers and thus, may play a more effective role in the surgical decision-making process. Also, lateralization of the patients with insignificant atrophy of hippocampus by the proposed method supports the notion of associated structural changes involving the amygdala and thalamus.
Mesial temporal lobe epilepsy (mTLE) is a chronic focal epileptic disorder characterized by recalcitrant seizures often necessitating surgical intervention. Identifying the laterality of seizure focus is crucial for pre-surgical planning. We implemented diffusion MRI (DMRI) connectometry to identify differences in white matter connectivity in patients with left and right mTLE relative to healthy control subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.