This paper investigates a new disturbance observer based non-singular fast terminal sliding mode control technique for the path tracking and stabilization of non-linear second-order systems with compound disturbance. The compound disturbance is comprised of both parametric and non-parametric uncertainties. While warranting fast convergence rate and robustness, it also dominates the singularity and complex-value number issues associated with conventional terminal sliding mode control. Furthermore, due to the estimation properties of the observer, knowledge about the bounds of the uncertainties is not required. The simulation results of two case studies, the velocity and path tracking of an autonomous underwater vehicle and the stabilization of a chaotic Φ6-Duffing oscillator, validate the efficacy of the proposed method.
To date, a novel class of smart materials, known as ionic polymer–metal composites, have been intensively studied because of their huge potential applications in robotics, microelectromechanical systems, biomedical devices, and artificial muscles. The position tracking control of the ionic polymer–metal composite actuators is one of the challenging tasks due to the highly nonlinear, uncertain, and unmodeled dynamics. These inaccurate and unmodeled dynamics cause the unwanted disturbances which reduce the control performance. Therefore, a robust feedback controller for position tracking of the ionic polymer–metal composite actuators is necessary. To address this issue, this article presents a super-twisting sliding mode controller combined with integral-chain differentiator as state observer. The main advantage of the proposed method is its potential to estimate the states of the system continuously. As a result, the controller not only eliminates the parameter uncertainties and external disturbance but also it can overcome the chattering problem. The results confirm the feasibility and efficiency of the proposed method both in simulation and experiment.
In this paper, the first order shear deformation theory is used to derive an analytical formulation for shrink-fitted thick-walled functionally graded cylinders. It is assumed that the cylinders have constant Poisson’s ratio and the elastic modulus varies radially along the thickness with a power function. Furthermore, a finite element simulation is carried out using COMSOL Multiphysics, which has the advantage of defining material properties as analytical functions. The results from first order shear deformation theory are compared with the findings of both plane elasticity theory and FE simulation. The results of this study could be used to design and manufacture for elastic shrink-fitted FG cylinders.
Based on the super twisting concept, this article develops an integral sliding mode controller with nonlinear disturbance observer for position control and extending the traveling range of an initially curved micro-beam. The nonlinear damped model of the curved micro-beam is modeled based on the non-classical continuum theory. The single-mode assumption is used to transform the nonlinear governing PDE of the system into a nonlinear state-space form. The robust controller is designed to overcome the position control problem in the presence of non-parametric uncertainties and unknown non-symmetric input saturation due to the existing constraints in the electrostatic actuation. The effects of the uncertainties are considered as a compound disturbance term which can be estimated in finite time. Furthermore, due to the estimation properties of the observer, knowledge about the bounds of the uncertainties is not required. Extensive simulation results clearly verified the effectiveness of the controller in position tracking and extending the traveling range of the initially curved micro-beam to the unstable zones under smooth control effort.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.