Core–shell nanostructures of carbon encapsulated iron nanoparticles (CEINPs) show unique properties and technological applications, because carbon shell provides extreme chemical stability and protects pure iron core against oxidation without impairing the possibility of functionalization of the carbon surface. Enhancing iron core magnetic properties and, in parallel, improving carbon shell sealing are the two major challenges in the synthesis of CEINPs. Here, we present the synthesis of both CEINPs and a new carbon encapsulated multi-iron nanoparticle by a new modified arc discharge reactor. The nanoparticle size, composition, and crystallinity and the magnetic properties have been studied. The morphological properties were observed by scanning electron microscopy and transmission electron microscopy. In order to evaluate carbon shell protection, the iron cores were characterized by selected area diffraction and fast Fourier transform techniques as well as by electron energy loss and energy dispersive X-ray spectroscopies. Afterward, the magnetic properties were investigated using a superconducting quantum interference device. As main results, spherical, oval, and multi-iron cores were controllably synthesized by this new modified arc discharge method. The carbon shell with high crystallinity exhibited sufficient protection against oxidation of pure iron cores. The presented results also provided new elements for understanding the growth mechanism of iron core and carbon shell.
Size control of core@shell nanostructures is still a challenge. Carbon encapsulated iron nanoparticles (CEINPs) were synthesized by arc discharge plasma method in this study. CEINPs size can be controlled by varying gas composition, due to change in plasma properties. The morphology and structural features were investigated using scanning electron microscopy, transmission electron microscopy (TEM) and high-resolution TEM. Magnetic properties were studied to confirm the changes in CEINPs size by using superconducting quantum interference device. In order to evaluate the carbon shell protection and ensure the absence of iron oxide, selected area electron diffraction technique, energy-dispersive x-ray spectroscopy and electron energy loss spectroscopy were employed. Moreover, the degree of carbon order-disorder was studied by Raman Spectroscopy. It was concluded that arc discharge method is a suitable technique for precise size control of CEINPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.