Membrane distillation (MD) is a rapidly emerging water treatment technology; however, membrane pore wetting is a primary barrier to widespread industrial use of MD. The primary causes of membrane wetting are exceedance of liquid entry pressure and membrane fouling. Developments in membrane design and the use of pretreatment have provided significant advancement toward wetting prevention in membrane distillation, but further progress is needed. In this study, a broad review is carried out on wetting incidence in membrane distillation processes. Based on this perspective, the study describes the wetting mechanisms, wetting causes, and wetting detection methods, as well as hydrophobicity measurements of MD membranes. This review discusses current understanding and areas for future investigation on the influence of operating conditions, MD configuration, and membrane non-wettability characteristics on wetting phenomena. Additionally, the review highlights mathematical wetting models and several approaches to wetting control, such as membrane fabrication and modification, as well as techniques for membrane restoration in MD. The literature shows that inorganic scaling and organic fouling are the main causes of membrane wetting. The regeneration of wetting MD membranes is found to be challenging and the obtained results are usually not favorable. Several pretreatment processes are found to inhibit membrane wetting by removing the wetting agents from the feed solution. Various advanced membrane designs are considered to bring membrane surface non-wettability to the states of superhydrophobicity and superomniphobicity; however, these methods commonly demand complex fabrication processes or high-specialized equipment. Recharging air in the feed to maintain protective air layers on the membrane surface has proven to be very effective to prevent wetting, but such techniques are immature and in need of significant research on design, optimization, and pilot-scale studies.
Although membrane distillation offers distinctive benefits in some certain areas, i.e., RO concentrate treatment, concentrating solutions in the food industry and solar heat utilization, the occurrence of wetting of the hydrophobic membrane hinders its potential industrial applications.Therefore, wetting prevention is a vital criterion for the treatment of solutions with lower surface tension than water. The present work examines the effect of recharging air bubbles on the membrane surface for the wetting incidence when a surfactant (sodium dodecyl sulfate, SDS) exists in a highly concentrated NaCl aqueous solution. This study shows that the presence of the air bubbles on the surface of the superhydrophobic membrane in a direct contact membrane distillation setup inhibited the occurrence of wetting (~100% salt rejection) even for high concentrations of the surface-active species (up to 0.8 mM SDS) in the feed solution while no undesirable influence on the permeate flux was observed. Introducing air into the feed side of the membrane displaces the liquid which partly tends to penetrate the macroporous structure with air bubbles and therefore increases the liquid entry pressure, and in addition, the simultaneous use of a superhydrophobic membrane enhances the solution contact angle.
A novel photocatalytic reactor for wastewater treatment was designed and constructed. The main part of the reactor was an aluminum tube in which 12 stainless steel circular baffles and four quartz tube were placed inside of the reactor like shell and tube heat exchangers. Four UV-C lamps were housed within the space of the quartz tubes. Surface of the baffles was coated with TiO2. A simple method was employed for TiO2 immobilization, while the characterization of the supported photocatalyst was based on the results obtained through performing some common analytical methods such as X-ray diffraction (XRD), scanning electron microscope (SEM), and BET. Phenol was selected as a model pollutant. A solution of a known initial concentration (20, 60, and 100 ppmv) was introduced to the reactor. The reactor also has a recycle flow to make turbulent flow inside of the reactor. The selected recycle flow rate was 7 × 10(-5) m(3).s(-1), while the flow rate of feed was 2.53 × 10(-7), 7.56 × 10(-7), and 1.26 × 10(-6) m(3).s(-1), respectively. To evaluate performance of the reactor, response surface methodology was employed. A four-factor three-level Box-Behnken design was developed to evaluate the reactor performance for degradation of phenol. Effects of phenol inlet concentration (20-100 ppmv), pH (3-9), liquid flow rate (2.53 × 10(-7)-1.26 × 10(-6) m(3).s(-1)), and TiO2 loading (8.8-17.6 g.m(-2)) were analyzed with this method. The adjusted R (2) value (0.9936) was in close agreement with that of corresponding R (2) value (0.9961). The maximum predicted degradation of phenol was 75.50 % at the optimum processing conditions (initial phenol concentration of 20 ppmv, pH ∼ 6.41, and flow rate of 2.53 × 10(-7) m(3).s(-1) and catalyst loading of 17.6 g.m(-2)). Experimental degradation of phenol determined at the optimum conditions was 73.7 %. XRD patterns and SEM images at the optimum conditions revealed that crystal size is approximately 25 nm and TiO2 nanoparticles with visible agglomerates distribute densely and uniformly over the surface of stainless steel substrate. BET specific surface area of immobilized TiO2 was 47.2 and 45.8 m(2) g(-1) before and after the experiments, respectively. Reduction in TOC content, after steady state condition, showed that maximum phenol decomposition occurred at neutral condition (pH ∼ 6).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.