Predicting customer churn has become the priority of every telecommunication service provider as the market is becoming more saturated and competitive. This paper presents a comparison of neural network learning algorithms for customer churn prediction. The data set used to train and test the neural network algorithms was provided by one of the leading telecommunication company in Malaysia. The Multilayer Perceptron (MLP) networks are trained using nine (9) Step Secant backpropagation (trainoss), Bayesian Regularization backpropagation (trainbr), and Resilient backpropagation (trainrp). The performance of the Neural Network is measured based on the prediction accuracy of the learning and testing phases. LM learning algorithm is found to be the optimum model of a neural network model consisting of fourteen input units, one hidden node and one output node. The best result of the experiment indicated that this model is able to produce the performance accuracy of 94.82%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.