Among many complications of sickle cell disease, renal failure is the main contributor to early mortality. It is present in up to 21% of patients with sickle cell disease. Although screening for microalbuminuria and proteinuria is the current acceptable practice to detect and follow renal damage in patients with sickle cell disease, there is a crucial need for other, more sensitive biomarkers. This becomes especially true knowing that those biomarkers start to appear only after more than 60% of the kidney function is lost. The primary purpose of this study is to determine whether lactate dehydrogenase (LDH) correlates with other, direct and indirect bio-markers of renal insufficiency in patients with sickle cell disease and, therefore, could be used as a biomarker for early renal damage in patients with sickle cell disease. Fifty-five patients with an established diagnosis of sickle cell disease were recruited to in the study. Blood samples were taken and 24-h urine collection samples were collected. Using Statcrunch, a data analysis tool available on the web, we studied the correlation between LDH and other biomarkers of kidney function as well as the distribution and relationship between the variables. Regression analysis showed a significant negative correlation between serum LDH and creatinine clearance, R (correlation coefficient) = -0.44, P = 0.0008. This correlation was more significant at younger age. This study shows that in sickle cell patients LDH correlates with creatinine clearance and, therefore, LDH could serve as a biomarker to predict renal insufficiency in those patients.
Acute heart failure (AHF) presents symptoms primarily the result of pulmonary congestion due to elevated left ventricular (LV) filling pressures with or without reduced ejection fraction (EF). Common precipitating pathology includes coronary artery disease (CAD), hypertension and valvular heart diseases, in addition to other noncardiac conditions, such as diabetes, anaemia and kidney dysfunction. 1,2Additionally, AHF poses major medical and socioeconomic burdens.It represents the most common discharge diagnosis in patients over 65 years of age in the US, and an AHF patient that requires hospitalisation has a 90-day mortality approaching 10 %. 3,4 The cornerstone of AHF treatment is diuretics and vasodilators, such as nitrates. Due to a lack of randomised controlled trials, the use of nitrates for management of AHF is not universally adopted.While organic nitrates are among the oldest treatments for chronic stable angina, they are underutilised in AHF. Organic nitrates are available as sublingual tablets, capsules, sprays, patches, ointments or intravenous (IV) solutions, all of which are potent vasodilators.Because of the challenges in AHF research, a data imbalance between acute and chronic HF treatment exists as more studies have been performed in the latter. Thus, the current level of evidence for the use of nitrates in AHF is only rated as 1C, i.e., 'expert opinion'. 5,6 The purpose of this article is to review the clinical efficacy and safety data of nitrates in AHF. Applied to the patient with congestive HF, vasodilatation induces a substantial reduction in biventricular filling pressure. Moreover, it reduces systemic and pulmonary vascular resistance and systemic arterial blood pressure (BP), 11 all of which lead to modest increases in cardiac stroke volume and cardiac output. How Nitrate Works Mechanism of Action 12Overall, the two most commonly used IV NO sources used clinically in the setting of AHF is the organic nitrate donor nitroglycerin, and the inorganic nitrate source sodium nitroprusside (SNP). Nitroglycerin potently dilates large arteries (including coronary arteries) but has less effect on smaller arterioles, while SNP is a predominant arteriolar dilator. That makes SNP is effective in recompensating patients with AHF. 13 Other important clinical differences between organic and inorganic nitrates are summarised in Table 1. AbstractThe purpose of this article is to review the clinical efficacy and safety of nitrates in acute heart failure (AHF) by examining various trials on nitrates in AHF. Management of AHF can be challenging due to the lack of objective clinical evidence guiding optimal management.There have been many articles suggesting that, despite a benefit, nitrates are underused in clinical practice. Nitrates, when appropriately dosed, have a favourable effect on symptoms, blood pressure, intubation rates, mortality and other parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.