Microgrids performance and stability mostly depend on power flow control strategy. In order to allow for a coordinated control while maintaining a reliable operation, decentralized control methods based on P and Q droop characteristics have been utilized. Inherently, the power droop control methods have slow dynamics. In this paper, a novel control method based on V-I characteristics is introduced to exploit the flexibility and fast dynamics of the inverter-based Distributed Energy Resources (DERs). In the proposed method, the direct and quadrature axis voltage components are drooped with the corresponding currents according to a piecewise linear droop function. Eigenvalue analysis of a sample microgrid shows that the proposed method features faster dynamics and improved damping compared to the conventional droop scheme. Simulation results are presented to verify the efficacy of the proposed method.
This paper presents a systematic methodology for design and tuning of the current controller in LCL gridconnected converters for wind turbine applications. The design target is formulated as a minimization of the current loop dominant time constant, which is in accordance with standard design guidelines for wind turbine controllers (fast time response and high stability margins). The proposed approach is derived from the impedance/admittance stability formulation, which, on one hand, has been proved to be suitable for controller design when active damping is implemented and, on the other hand, it has been also proved to be very suitable for system level studies in applications with a high penetration of renewable energy resources. The tuning methodology is as follows: firstly, the physical system is modelled in terms of the converter admittance and its equivalent grid impedance; then, a sensitivity transfer function is derived, from which the closed-loop eigenvalues can be calculated; finally, the set of control gains that minimize the dominant time constant are obtained by direct search optimization. A case study that models the target system in a low power scale is provided and experimental verification validates the theoretical analysis. More specifically, it has been found that the solution that solves the minimization of the current controller time constant (wind turbine controller target) also corresponds to a highly damped electrical response (robustness provided by the active damping).
This paper proposes a new decentralized power management and load sharing method for a photovoltaic based islanded microgrid consisting of various PV units, battery units and hybrid PV/battery units. Unlike the previous methods in the literature, there is no need to communication among the units and the proposed method is not limited to the systems with separate PV and battery units or systems with only one hybrid unit. The proposed method takes into account the available PV power and battery conditions of the units to share the load among them. To cover all possible conditions of the microgrid, the operation of each unit is divided into five states and modified active powerfrequency droop functions are used according to operating states. The frequency level is used as trigger for switching between the states. Efficacy of the proposed method in different load, PV generation and battery conditions is validated experimentally in a microgrid lab prototype consisted of three units. Index Terms-decentralized power management; hybrid source microgrid; hybrid PV/battery unit; SoC; PV power curtailment;
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.