Cancers of the colon are most common in the Western world. In majority of these cases, there is no familial history and sporadic gene damage seems to play an important role in the development of tumors in the colon. Studies have shown that environmental factors, especially diet, play an important role in susceptibility to GI tract cancers. Consequently, environmental chemicals that contaminate food or diet during its preparation becomes important in the development of GI cancers. Polycyclic aromatic hydrocarbons (PAHs) are one such family of ubiquitous environmental toxicants. These pollutants enter the human body through consumption of contaminated food, drinking water, inhalation of cigarette smoke, automobile exhausts, and contaminated air from occupational settings. Among these pathways, dietary intake of PAHs constitutes a major source of exposure in humans. Although many reviews and books on PAHs and their ability to cause toxicity and breast or lung cancer have been published, aspects on contribution of diet, smoking and other factors towards development of digestive tract cancers and strategies to assess risk from exposure to PAHs have received much less attention. This review, therefore, focuses on dietary intake of PAHs in humans, animal models, and cell cultures used for GI cancer studies along with epidemiological findings. Bioavailability and biotransformation processes, which influence the disposition of PAHs in body and the underlying causative mechanisms of GI cancers, are also discussed. The existing data gaps and scope for future studies is also emphasized. This information is expected to stimulate research on mechanisms of sporadic GI cancers caused by exposure to environmental carcinogens.
Abstract:Two experiments were conducted to determine: 1) whether the adult male transgenic sickle cell mouse (Tg58 × Tg98; TSCM), exhibits the patterns of reproductive endpoints (hypogonadism) characteristic of men with sickle cell disease (SCD) and 2) whether hydroxyurea (HU) exacerbates this condition. In Experiment 1, blood samples were collected from adult age-matched TSCM and ICR mice (ICRM) (N = 10/group) for plasma testosterone measurements. Subsequently, mice were sacrificed, testes excised and weighed and stored spermatozoa recovered for the determination of sperm density, progressive motility and percentage of spermatozoa with normal morphology. In experiment 2, adult male TSCM were orally treated with 25 mg HU/kg body weight/day for 28 or 56 days. Control mice received the vehicle for HU (saline) as described above. At the end of the treatment periods, blood samples were collected for quantification of circulating testosterone. Subsequently, mice were sacrificed, testes and epididymides were recovered and weighed and one testis per mouse was subjected to histopathology. Stored OPEN ACCESS Int. J. Environ. Res. Public Health 2009, 61125 spermatozoa were recovered for the determination of indices of sperm quality mentioned in Experiment 1. Testis weight, stored sperm density, progressive motility, percentage of spermatozoa with normal morphology and plasma testosterone concentrations of TSCM were significantly lower by 40, 65, 40, 69 and 66%, respectively than those of ICRM. These data indicate that adult TSCM used in this study suffered from hypogonadism, characteristically observed among adult male SCD patients. In Experiment 2, HU treatment significantly decreased testis weight on day 28, (0.09 ± 0.004g) that was further decreased on day 56 (0.06 ± 0.003g; treatment x time interaction) compared with controls (day 28, 0.15 ± 0.01g; day 56, 2, 0.16 ± 0.01g). Concomitant with a 52% shrinkage (P<0.001) in area of testes in 56 days of HU treatment, testes from HU-treated TSCM exhibited significant atrophic degeneration in the seminiferous tubules compared with controls. Furthermore, treated TSCM had only Sertoli cells and cell debris remaining in most of the seminiferous tubules in comparison with controls. Leydig cell prominence and hyperplasia were more evident (P<0.05) in the steroidogenic compartments of testes of HU-treated TSCM compared with controls. However, plasma testosterone concentrations were reduced by HU treatment (P<0.05; treatment x time interaction) compared with controls on the two time periods studied. Epididymides from HU-treated TSCM sustained a 25% shrinkage (P<0.05), along with 69 (P<0.005) and 95% reduction (P<0.005), in stored sperm density and sperm progressive motility (treatment x time interaction P<0.05), respectively on day 56 of treatment compared with controls. These data demonstrate that TSCM used in this study exhibited SCD-induced hypogonadism, thus authenticating their use for studying the effect of HU on male reproductive endpoints observed in SCD patients. Secondaril...
This study evaluated the effect of inhaled BaP on female reproductive function. Rats were exposed to 50, or 75 or 100 μg BaP/m3, four hours a day for 14 days via inhalation. Plasma E2, P4, LH and FSH concentrations were determined. Ovarian BaP metabolism and aryl hydrocarbon hydrolase (AHH) activity at proestrus were determined and fertility evaluations were conducted. Ovulation rate and number of pups/litter were reduced in rats exposed to 100 μg BaP/m3 compared with other treatment and control groups. Plasma concentrations of E2, and LH were significantly reduced at proestrus in BaP-exposed versus those of controls whereas those of P4 were significantly reduced at diestrus I. The activity of AHH in ovarian and liver tissues and concentrations of BaP 7,8-diol and BaP 3,6-dione metabolites increased in an exposure concentration-dependent manner. These data suggest that exposure of rats to BaP prior to mating contributes to reduced ovarian function and fetal survival.
The objective of this study was to evaluate the reproductive risk associated with exposure of adult male Fisher-344 rats to inhaled benzo(a)pyrene (BaP). Rats were assigned randomly to a treatment or control group. Treatment consisted of sub-chronic exposure of rats via inhalation to 75μg BaP/ m 3 , 4 hours daily for 60 days, while control animals were unexposed (UNC). Blood samples were collected immediately after the cessation of exposures (time 0) and subsequently at 24, 48, and 72 hrs, to assess the effect of bioavailable BaP on plasma testosterone and luteinizing hormone (LH) concentrations. Rats were sacrificed after the last blood collection. Testes were harvested, weighed and prepared for histology and morphometric analysis, and cauda epididymides were isolated for the determination of progressive motility and density of stored spermatozoa. BaP exposure reduced testis weight compared with UNC (Mean ± SE; 2.01 ± 0.11 vs. 3.04 ± 0.16 g; P< 0.025), and caused significant reductions in the components of the steroidogenic and spermatogenic compartments of the testis. Progressive motility and mean density of stored spermatozoa were reduced (P< 0.05). Plasma testosterone concentrations were decreased by two-thirds in BaPexposed rats throughout the time periods studied compared with those of their UNC counterparts (P< 0.05), concomitant with increased concentrations of LH in BaP-exposed rats (P< 0.05). These data suggest that sub-chronic exposure to inhaled BaP contribute to reduced testicular and epididymal function in exposed rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.