In the present study, Inconel 718 (IN718) superalloy fabricated by laser powder bed fusion (LPBF) has been characterized focusing on the effect of both homogenization and solution treatment time on grains structure, crystallographic texture, precipitates formation/dissolution and material hardness. For this purpose, a heat-treatment time window with a wide range of soaking times for both treatments was established aiming to develop the optimal post-treatment conditions for laser powder bed fused IN718. It was found that the as-printed IN718 is characterized by very fine columnar/cellular dendrites with Laves phase precipitating at the grain boundaries as well as inter-dendritic regions, which differs from the microstructure of wrought and cast materials and requires special heat-treatment conditions different from the standard treatments. The results reveal that the relatively short homogenization treatment at 1080 °C for 1 h was not enough to significantly change the as-printed grain structure and completely dissolve the segregates and Laves phase. However, a completely recrystallized IN718 material and more Laves phase dissolution were obtained after homogenization treatment for 4 h. A further increase in time of the homogenization treatment (7 h) resulted in grain growth and coarsening of carbides precipitates. The solution treatment time at 980 °C did not cause noticeable changes in the crystallographic texture and grain structure. Nevertheless, the amount of δ-phase precipitation was significantly affected by the solution treatment time. After applying the heat-treatment time window, the hardness increased by 51–72% of the as-printed condition depending on the treatment time due to the formation of γ′ and γ″ in the γ-matrix. The highest material hardness was obtained after 1 h homogenization, whereas the prolonged time treatments reduced the hardness. This study provides a comprehensive investigation of the post heat-treatments of the laser powder bed fused IN718 that can result in an optimized microstructure and mechanical behavior for particular applications.
(Mg,Zn)3Gd precipitates were observed in the form of parallel arrays within a α-Mg matrix of a Mg-3.5Gd-1Zn-0.6Zr (GZ41K) alloy following isothermal holding at 450 ℃ for 20 min or uniaxial hot compression testing at 450 ℃ and at strain rates of 10-3 s-1 and 10-1 s-1. A microstructural analysis using a combination of scanning and transmission electron microscopies showed arrays of precipitates nucleated on stacking faults as a result of the LPSO structures decomposing statically after long isothermal holding times at 450 ℃, which is lower than the dissolution temperature of (Mg,Zn)3Gd precipitates (520 ℃), and dynamically, as a result of hot compression. The presence of precipitates on slip bands was also observed in the case of deformed specimens. The characteristics of the precipitates were investigated using differential thermal analysis, and optical and electron microscopy. The influences of the solutionizing temperature and deformation conditions on distribution, morphology and volume fraction of precipitates were quantified. The results are interpreted in terms of the influence of the strain rate in increasing the stacking fault/dislocation intersections and the decomposition of the L1 2 structure of stacking faults.
In the present study, the effect of homogenization and solution treatment times on the elevated-temperature (650 °C) mechanical properties and the fracture mechanisms of Inconel 718 (IN718) superalloy fabricated by laser powder bed fusion (LPBF) was investigated. Homogenization times between 1 and 7 h at 1080 °C were used, while solution treatments at 980 °C were performed in the range from 15 to 60 min. The as-printed condition showed the lowest strength but the highest elongation to failure at 650 °C, compared to the heat-treated conditions. After heat treatments, the strength of the IN718 alloy increased by 20.3–31% in relation to the as-printed condition, depending on the treatment time, whereas the ductility decreased significantly, by 67.4–80%. Among the heat treatment conditions, the 1 h homogenized conditions at 1080 °C (HSA1 and HSA2) exhibited the highest strength and ductility due to the combined effects of the precipitation hardening and sub-structural changes. Further increases in the homogenization time to 4 and 7 h led to a decrease in the strength and significant ductility loss of the LPBF IN718 due to the considerable annihilation of the dislocation tangles and a greater precipitation of coarse MC carbide particles. Furthermore, it was found that the solution treatment duration had a crucial influence on the mechanical properties at 650 °C due to the increase in the grain boundary strength through the pinning effect of the intergranular δ-phase. In addition, the fracture mechanism of the LPBF IN718 was found to be dependent on the heat treatment time. Finally, this investigation provides a map that summarizes the effect of homogenization and solution treatment times on the high-temperature mechanical behavior of LPBF IN718 by relating it to the corresponding microstructural evolution. This effort strives to assist in tailoring the mechanical properties of LPBF IN718 based on the design requirements for some specific applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.