Purpose -This paper aims to propose an integration of the analytic hierarchy process (AHP) and data envelopment analysis (DEA) methods in a multiattribute grey relational analysis (GRA) methodology in which the attribute weights are completely unknown and the attribute values take the form of fuzzy numbers. Design/methodology/approach -This research has been organized to proceed along the following steps: computing the grey relational coefficients for alternatives with respect to each attribute using a fuzzy GRA methodology. Grey relational coefficients provide the required (output) data for additive DEA models; computing the priority weights of attributes using the AHP method to impose weight bounds on attribute weights in additive DEA models; computing grey relational grades using a pair of additive DEA models to assess the performance of each alternative from the optimistic and pessimistic perspectives; and combining the optimistic and pessimistic grey relational grades using a compromise grade to assess the overall performance of each alternative. Findings -The proposed approach provides a more reasonable and encompassing measure of performance, based on which the overall ranking position of alternatives is obtained. An illustrated example of a nuclear waste dump site selection is used to highlight the usefulness of the proposed approach. Originality/value -This research is a step forward to overcome the current shortcomings in the weighting schemes of attributes in a fuzzy multiattribute GRA methodology.
This research proposes an integrated data envelopment analysis (DEA) and analytic hierarchy process (AHP) approach to obtain attribute weights in a grey relational analysis (GRA) method. First, this can be implemented by developing a DEA-based GRA model to obtain attribute weights for the alternative under assessment. Second, weight bounds, using AHP, can be incorporated in the DEA-based GRA model to reflect the priority weights of attributes. Third, the effects of incorporating weight bounds on attribute weights can be analyzed by developing a parametric distance model. Increasing the value of a parameter in a domain of grey relational loss, i.e., a reduction in grey relational grade, we explore the tradeoff relationship between the grey relational grade and the priority weights of attributes for each alternative. This may result in various ranking positions for each alternative in comparison with the other alternatives. An illustrated example of selecting dispatching rules is also presented to highlight the usefulness of the proposed approach.
This research proposes an integrated approach to the Data Envelopment Analysis (DEA) and Analytic Hierarchy Process (AHP) methodologies for ratio analysis. According to this, we compute two sets of weights of ratios in the DEA framework. All ratios are treated as outputs without explicit inputs. The first set of weights represents the most attainable efficiency level for each Decision Making Unit (DMU) in comparison to the other DMUs. The second set of weights represents the relative priority of output-ratios using AHP. We assess the performance of each DMU in terms of the relative closeness to the priority weights of output-ratios. For this purpose, we develop a parametric goal programming model to measure the deviations between the two sets of weights. Increasing the value of a parameter in a defined range of efficiency loss, we explore how much the deviations can be improved to achieve the desired goals of the decision maker. This may result in various ranking positions for each DMU in comparison to the other DMUs. An illustrated example of eight listed companies in the steel industry of China is used to highlight the usefulness of the proposed approach.
This research proposes a hierarchical aggregation approach using Data Envelopment Analysis (DEA) and Analytic Hierarchy Process (AHP) for indicators. The core logic of the proposed approach is to reflect the hierarchical structures of indicators and their relative priorities in constructing composite indicators (CIs), simultaneously. Under hierarchical structures, the indicators of similar characteristics can be grouped into sub-categories and further into categories. According to this approach, we define a domain of composite losses, i.e., a reduction in CI values, based on two sets of weights. The first set represents the weights of indicators for each Decision Making Unit (DMU) with the minimal composite loss, and the second set represents the weights of indicators bounded by AHP with the maximal composite loss. Using a parametric distance model, we explore various ranking positions for DMUs while the indicator weights obtained from a three-level DEA-based CI model shift towards the corresponding weights bounded by AHP. An illustrative example of road safety performance indicators (SPIs) for a set of European countries highlights the usefulness of the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.