The extracts obtained have promising antibacterial capacities which need further investigation for them to be incorporated in medical or nutritional applications.
Recent studies have raised the question whether there is a potential threat by a horizontal transfer of toxic plant constituents such as pyrrolizidine alkaloids (PAs) between donor-PA-plants and acceptor non-PA-plants. This topic raised concerns about food and feed safety in the recent years. The purpose of the study described here was to investigate and evaluate horizontal transfer of PAs between donor and acceptor-plants by conducting a series of field trials using the PA-plant Lappula squarrosa as model and realistic agricultural conditions. Additionally, the effect of PA-plant residues recycling in the form of composts or press-cakes were investigated. The PA-transfer and the PA-content of soil, plants, and plant waste products was determined in form of a single sum parameter method using high-performance liquid chromatography mass spectroscopy (HPLC-ESI-MS/MS). PA-transfer from PA-donor to acceptor-plants was frequently observed at low rates during the vegetative growing phase especially in cases of close spatial proximity. However, at the time of harvest no PAs were detected in the relevant field products (grains). For all investigated agricultural scenarios, horizontal transfer of PAs is of no concern with regard to food or feed safety.
The highly toxic species common ragwort (Jacobaea vulgaris Gaertn.) prefers to migrate into protected dry grassland biotopes and limits the use of the resulting biomass as animal feed. There is an urgent need for a safe alternative use of the contaminated biomass apart from landfill disposal. We investigated the optional utilization of biomethanization of fresh and ensiled common ragwort biomasses and evaluated their energetic potentials by estimation models based on biochemical characteristics and by standardized batch experiments. The fresh and ensiled substrates yielded 174 LN∙kg−1 oDM methane and 185 LN∙kg−1 oDM, respectively. Ensiling reduced the toxic pyrrolizidine alkaloid content by 76.6%; a subsequent wet fermentation for an additional reduction is recommended. In comparison with other biomasses from landscape cultivation, ragwort biomass can be ensiled readily but has a limited energy potential if harvested at its peak flowering stage. Considering these properties and limitations, the energetic utilization is a promising option for a sustainable handling of Senecio-contaminated biomasses in landscape conservation practice and represents a safe alternative for reducing pyrrolizidine alkaloid entry into the agri-food sector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.