Glioblastoma (GBM) is the deadliest adult brain cancer, and all patients ultimately succumb to the disease. Radiation therapy (RT) provides survival benefit of 6 mo over surgery alone, but these results have not improved in decades. We report that radiation induces a glioma-initiating cell phenotype, and we have identified trifluoperazine (TFP) as a compound that interferes with this phenotype conversion. TFP causes loss of radiation-induced Nanog mRNA expression, and activation of GSK3 with consecutive posttranslational reduction in p-Akt, Sox2, and β-catenin protein levels. TFP did not alter the intrinsic radiation sensitivity of glioma-initiating cells (GICs). Continuous treatment with TFP and a single dose of radiation reduced the number of GICs in vivo and prolonged survival in syngeneic and patient-derived orthotopic xenograft (PDOX) mouse models of GBM. Our findings suggest that the combination of a dopamine receptor antagonist with radiation enhances the efficacy of RT in GBM by preventing radiation-induced phenotype conversion of radiosensitive non-GICs into treatment-resistant, induced GICs (iGICs).
Background Glioblastoma is the deadliest brain tumor in adults and the standard-of-care consists of surgery followed by radiation and treatment with temozolomide. Overall survival times for patients suffering from glioblastoma are unacceptably low indicating an unmet need for novel treatment options. Methods Using patient-derived HK-157, HK-308, HK-374, and HK-382 glioblastoma lines, the GL261 orthotopic mouse models of glioblastoma and HK-374 patient-derived orthotopic xenografts we tested the effect of radiation and the dopamine receptor antagonist quetiapine on glioblastoma self-renewal in vitro and survival in vivo. A possible resistance mechanism was investigated using RNA-Sequencing. The blood-brain-barrier-penetrating statin atorvastatin was used to overcome this resistance mechanism. All statistical tests were 2-sided. Results Treatment of glioma cells with the dopamine receptor antagonist quetiapine reduced glioma cell self-renewal in vitro and combined treatment of mice with quetiapine and radiation prolonged the survival of glioma-bearing mice. The combined treatment induced the expression of genes involved in cholesterol biosynthesis. This rendered GL261 and HK-374 orthotopic tumors vulnerable to simultaneous treatment with atorvastatin and further statistically significantly prolonged the survival of C57BL/6 (n = 10 to 16 mice per group; median survival not reached; Log-Rank test, p < 0.001) and NSG mice (n = 8 to 21 mice per group; hazard ratio = 3.96, 95% confidence interval = 0.29 to 12.40; Log-Rank test, p < 0.001), respectively. Conclusions Our results indicate promising therapeutic efficacy with the triple combination of quetiapine, atorvastatin and radiation treatment against glioblastoma without increasing the toxicity of radiation. With both drugs readily available for clinical use our study could be rapidly translated into a clinical trial.
The objective of the study was to identify the mechanism of action for a radiation mitigator of the gastrointestinal (GI) acute radiation syndrome (ARS), identified in an unbiased high-throughput screen. We used mice irradiated with a lethal dose of radiation and treated with daily injections of the radiation mitigator 1-[(4-nitrophenyl)sulfonyl]-4-phenylpiperazine to study its effects on key pathways involved in intestinal stem cell (ISC) maintenance. RNASeq, quantitative reverse transcriptase-polymerase chain reaction, and immunohistochemistry were performed to identify pathways engaged after drug treatment. Target validation was performed with competition assays, reporter cells, and in silico docking. 1-[(4-Nitrophenyl)sulfonyl]-4-phenylpiperazine activates Hedgehog signaling by binding to the transmembrane domain of Smoothened, thereby expanding the ISC pool, increasing the number of regenerating crypts and preventing the GI-ARS. We conclude that Smoothened is a target for radiation mitigation in the small intestine that could be explored for use in radiation accidents as well as to mitigate normal tissue toxicity during and after radiotherapy of the abdomen.
Background Normal tissue toxicity is an inevitable consequence of primary or secondary brain tumor radiotherapy. Cranial irradiation commonly leads to neurocognitive deficits that manifest months or years after treatment. Mechanistically, radiation-induced loss of neural stem/progenitor cells, neuroinflammation, and demyelination are contributing factors that lead to progressive cognitive decline. Methods The effects of 1-[(4-nitrophenyl)sulfonyl]-4-phenylpiperazine (NSPP) on irradiated murine neurospheres, microglia cells, and patient-derived gliomaspheres were assessed by sphere-formation assays, flow cytometry, and interleukin (IL)-6 enzyme-linked immunosorbent assay. Activation of the hedgehog pathway was studied by quantitative reverse transcription PCR. The in vivo effects of NSPP were analyzed using flow cytometry, sphere-formation assays, immunohistochemistry, behavioral testing, and an intracranial mouse model of glioblastoma. Results We report that NSPP mitigates radiation-induced normal tissue toxicity in the brains of mice. NSPP treatment significantly increased the number of neural stem/progenitor cells after brain irradiation in female animals, and inhibited radiation-induced microglia activation and expression of the pro-inflammatory cytokine IL-6. Behavioral testing revealed that treatment with NSPP after radiotherapy was able to successfully mitigate radiation-induced decline in memory function of the brain. In mouse models of glioblastoma, NSPP showed no toxicity and did not interfere with the growth-delaying effects of radiation. Conclusions We conclude that NSPP has the potential to mitigate cognitive decline in patients undergoing partial or whole brain irradiation without promoting tumor growth and that the use of this compound as a radiation mitigator of radiation late effects on the central nervous system warrants further investigation.
Objective: Exposure to lethal doses of radiation has severe effects on normal tissues. Exposed individuals experience a plethora of symptoms in different organ systems including the gastrointestinal (GI) tract, summarized as Acute Radiation Syndrome (ARS). There are currently no approved drugs for mitigating GI-ARS. A recent high-throughput screen performed at the UCLA Center for Medical Countermeasures against Radiation identified compounds containing sulfonylpiperazine groups with radiation mitigation properties to the hematopoietic system and the gut. Among these 1-[(4-Nitrophenyl)sulfonyl]-4-phenylpiperazine (Compound #5) efficiently mitigated gastrointestinal ARS. However, the mechanism of action and target cells of this drug is still unknown. In this study we examined if Compound #5 affects gut-associated lymphoid tissue (GALT) with its subepithelial domes called Peyer's patches. Methods: C3H mice were irradiated with 0 or 12 Gy total body irradiation (TBI). A single dose of Compound #5 or solvent was administered subcutaneously 24 hours later. 48 hours after irradiation the mice were sacrificed, and the guts examined for changes in the number of visible Peyer's patches. In some experiments the mice received 4 daily injections of treatment and were sacrificed 96 hours after TBI. For immune histochemistry gut tissues were fixed in formalin and *
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.