Inflammatory bowel disease (IBD) is a group of chronic disorders of the gastrointestinal tract comprising Crohn's disease (CD) and ulcerative colitis (UC). Their etiologies are unknown, but they are characterised by an imbalanced production of pro-inflammatory mediators, e.g., tumor necrosis factor (TNF)-α, as well as increased recruitment of leukocytes to the site of inflammation. Advantages in understanding the role of the inflammatory pathways in IBD and an inadequate response to conventional therapy in a large portion of patients, has over the last two decades lead to new therapies which includes the TNF inhibitors (TNFi), designed to target and neutralise the effect of TNF-α. TNFi have shown to be efficient in treating moderate to severe CD and UC. However, convenient alternative therapeutics targeting other immune pathways are needed for patients with IBD refractory to conventional therapy including TNFi. Indeed, several therapeutics are currently under development, and have shown success in clinical trials. These include antibodies targeting and neutralising interleukin-12/23, small pharmacologic Janus kinase inhibitors designed to block intracellular signaling of several pro-inflammatory cytokines, antibodies targeting integrins, and small anti-adhesion molecules that block adhesion between leukocytes and the intestinal vascular endothelium, reducing their infiltration into the inflamed mucosa. In this review we have elucidated the major signaling pathways of clinical importance for IBD therapy and highlighted the new promising therapies available. As stated in this paper several new treatment options are under development for the treatment of CD and UC, however, no drug fits all patients. Hence, optimisations of treatment regimens are warranted for the benefit of the patients either through biomarker establishment or other rationales to maximise the effect of the broad range of mode-of-actions of the present and future drugs in IBD.
GARP (glycoprotein-A repetitions predominant) is a type I transmembrane cell surface docking receptor for latent transforming growth factor-β (TGF-β) that is abundantly expressed on regulatory T lymphocytes and platelets. GARP regulates the availability of membrane-bound latent TGF-β and modulates its activation. For this reason, GARP expression on immune and non-immune cells is involved in maintaining peripheral tolerance. It plays an important role in preventing inflammatory diseases such as allergy and graft versus host disease (GvHD). GARP is also frequently hijacked by cancer cells to promote oncogenesis. This review summarizes the most important features of GARP biology described to date including gene regulation, protein expression and mechanism in activating latent TGF-β, and the function of GARP in regulatory T cell biology and peripheral tolerance, as well as GARP’s increasingly recognized roles in platelet-mediated cancer immune evasion. The promise for GARP-targeted strategy as a novel immunotherapy of cancer is also highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.