In recent decades many attempts have been made at the solution of Job Shop Scheduling Problem using a varied range of tools and techniques such as Branch and Bound at one end of the spectrum and Heuristics at the other end. However, the literature reviews suggest that none of these techniques are sufficient on their own to solve this stubborn NP-hard problem. Hence, it is postulated that a suitable solution method will have to exploit the key features of several strategies. We present here one such solution method incorporating Genetic Algorithm and Tabu Search. The rationale behind using such a hybrid method as in the case of other systems which use GA and TS is to combine the diversified global search and intensified local search capabilities of GA and TS respectively. The hybrid model proposed here surpasses most similar systems in solving many more traditional benchmark problems and real-life problems. This, the system achieves by the combined impact of several small but important features such as powerful chromosome representation, effective genetic operators, restricted neighbourhood strategies and efficient search strategies along with innovative initial solutions. These features combined with the hybrid strategy employed enabled the system to solve several benchmark problems optimally, which has been discussed elsewhere in Meeran and Morshed (8th Asia Pacific industrial engineering and management science conference, Kaohsiung, Taiwan, 2007). In this paper we bring out the system's practical usage aspect and demonstrate that the system is equally capable of solving real life Job Shop problems.
PurposeThe recent pandemic caused by coronavirus disease 2019 (COVID-19) has significantly impacted the operational performances of pharmaceutical supply chains (SCs), especially in emerging economies that are critically vulnerable due to their inadequate resources. Finding the possible barriers that continue to impede the sustainable performance of SCs in the post-COVID-19 era has become essential. This study aims to investigate and analyze the barriers to achieving sustainability in the pharmaceutical SC of an emerging economy in a bid to help decision-makers recognize the most influential barriers.Design/methodology/approachTo achieve the goals, two decision-making tools are integrated to analyze the most critical barriers: interpretive structural modeling (ISM) and the matrix of cross-impact multiplications applied to classification (MICMAC). In contrast to other multi-criteria decision-making (MCDM) approaches, ISM develops a hierarchical decision tool for decision-makers and cluster analysis of the barriers using the MICMAC method based on their driving and dependency powers.FindingsThe findings reveal that the major barriers are in a four-level hierarchical relationship where “Insufficient SC strategic plans to ensure agility during crisis” acts as the most critical barrier, followed by “Poor information structure among SC contributors,” and “Inadequate risk management policy under pandemic.” Finally, the MICMAC analysis validates the findings from the ISM approach.Originality/valueThis study provides meaningful insights into barriers to achieving sustainability in pharmaceutical SCs in the post-COVID-19 era. The study can help pharmaceutical SC practitioners to better understand what can go wrong in post-COVID-19, and develop actionable strategies to ensure sustainability and resilience in practitioners' SCs.
Background: Retail chains aim to maintain a competitive advantage by ensuring product availability and fulfilling customer demand on-time. However, inefficient scheduling and vehicle routing from the distribution center may cause delivery delays and, thus, stock-outs on the store shelves. Therefore, optimization of vehicle routing can play a vital role in fulfilling customer demand. Methods: In this research, a case study is formulated for a chain of retail stores in Dhaka City, Bangladesh. Orders from various stores are combined, grouped, and scheduled for Region-1 and Region-2 of Dhaka City. The ‘vehicle routing add-on’ feature of Google Sheets is used for scheduling and navigation. An android application, Intelligent Route Optimizer, is developed using the shortest path first algorithm based on the Dijkstra algorithm. The vehicle navigation scheme is programmed to change the direction according to the shortest possible path in the google map generated by the intelligent routing optimizer. Results: With the application, the improvement of optimization results is evident from the reductions of traveled distance (8.1% and 12.2%) and time (20.2% and 15.0%) in Region-1 and Region-2, respectively. Conclusions: A smartphone-based application is developed to improve the distribution plan. It can be utilized for an intelligent vehicle routing system to respond to real-time traffic; hence, the overall replenishment process will be improved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.