Specific chromosomal abnormalities and gene mutations may serve as diagnostic and prognostic indicators for disease progression and survival. The identification of these anomalies by state-of-the-art molecular (cyto)genetic techniques such as fluorescence in situ hybridization (FISH), comparative genomic hybridization (CGH), single nucleotide polymorphism (SNP) microarray-based genomic profiling and next-generation sequencing (NGS) can be of paramount help for the clinical management of these patients, including optimal treatment design. The efficacy of novel therapeutics should to be tested according to the presence of these molecular lesions in CLL patients.
Acute myeloid leukemia (AML) is the most common acute leukemia in adults, which is heterogeneous in terms of morphological, cytogenetic and clinical features. Cytogenetic abnormalities, including karyotype aberrations, gene mutations and gene expression abnormalities are the most important diagnostic tools in diagnosis, classification and prognosis in acute myeloid leukemias. Based on World Health Organization (WHO) classification, acute myeloid leukemias can be divided to four groups. Due to the heterogeneous nature of AML and since most therapeutic protocols in AML are based on genetic alterations, gathering further information in the field of rare disorders as well as common cytogenetic abnormalities would be helpful in determining the prognosis and treatment in this group of diseases. Recently, the role of microRNAs (miRNAs) in both normal hematopoiesis and myeloid leukemic cell differentiation in myeloid lineage has been specified. miRNAs can be used instead of genes for AML diagnosis and classification in the future, and can also play a decisive role in the evaluation of relapse as well as response to treatment in the patients. Therefore, their use in clinical trials can affect treatment protocols and play a role in therapeutic strategies for these patients. In this review, we have examined rare cytogenetic abnormalities in different groups of acute myeloid leukemias according to WHO classification, and the role of miRNA expression in classification, diagnosis and response to treatment of these disorders has also been dealt with.
Background This study compared efficacy and safety of TA4415V, a trastuzumab biosimilar, with reference trastuzumab in patients with human epidermal growth factor receptor 2–positive (HER2-positive) early-stage breast cancer treated in the neoadjuvant setting in Iran. Methods Patients were randomly assigned to receive neoadjuvant TA4415V or reference trastuzumab concurrently with docetaxel (TH phase) for 4 cycles after treatment with 4 cycles of doxorubicin and cyclophosphamide (AC phase). Chemotherapy was followed by surgery. The primary endpoint was the comparison of pathologic complete response (pCR) rate in the per-protocol population. Secondary endpoints included comparisons of overall response rate (ORR), breast-conserving surgery (BCS), safety, and immunogenicity. Results Ninety-two participants were analyzed in the per-protocol population (TA4415V, n = 48; reference trastuzumab, n = 44). The pCR rates were 37.50% and 34.09% with TA4415V and reference drug, respectively. The 95% CI of the estimated treatment outcome difference (− 0·03 [95% CI − 0.23 to 0.16]) was within the non-inferiority margin. No statistically significant difference was observed between the groups for other efficacy variables in the ITT population: ORR (89.13% vs. 83.33%; p = 0.72) and BCS (20.37% vs. 12.96%; p = 0.42) in the TA4415V and reference drug group, respectively. At least one grade 3 or 4 adverse events occurred in 27 (50%) patients in the TA4415V group versus 29 (53.70%) in the reference trastuzumab group (p = 0.70). The decrease in left ventricular ejection fraction (LVEF), as an adverse event of special interest (AESI) for trastuzumab, was compared between treatment groups in TH phase. Results demonstrated an LVEF decrease in 7 (12.96%) and 9 (16.67%) patients in TA4415V and reference trastuzumab groups, respectively (p = 0.59). Anti-drug antibodies (ADA) were not detected in any samples of groups. Conclusions Non-inferiority for efficacy was demonstrated between TA4415V and Herceptin based on the ratio of pCR rates in HER2-positive early breast cancer patients. In addition, ORR and BCS, as secondary endpoints, were not significantly different. Safety profile and immunogenicity were also comparable between the two groups.
We introduce a 78-year-old woman presented with thrombocytosis and high blast count who had a history of splenectomy. Her cytogenetic analysis revealed aberrant chromosomal rearrangements in different clonal populations harboring 46XX karyotype with t(9;22) (q34;q11). RT-PCR assay detected the e1a2 BCR-ABL translocation resulting from rearrangement of the minor breakpoint cluster region (m-bcr) in BCR gene. Subsequent evaluation of the disease showed calreticulin (CALR) 52-bp deletion as well as the absence of JAK2V617F heterozygous mutation in granulocyte population of peripheral blood using allele-specific PCR and bi-directional DNA sequencing. To our knowledge, this is the first case of a patient initially diagnosed as p190 BCR-ABL transcript positive CML in blast crisis characterized by a 52-bp deletion in CALR gene.
Liver is the organ responsible for hematopoiesis during fetal life, which is also a target organ of metastasis for several cancers. In order to recognize the hepatic metastatic changes, obtain a better grasp of cancer prevention, treatment, and inhibition mode of hepatic metastasis progression, we investigate the changes and transformation of normal hepatic niche cells to metastatic niche ones in this review. On the other hand, since metastatic diseases alter the liver function, the changes in a number of cancers that metastasize to the liver have also been reviewed. Relevant English-language literature was searched and retrieved from PubMed (1994-2014) using the following keywords: hepatic stem cell niche, hepatic metastatic niche, chemokine, and microRNAs (miRNAs). Also, over 86 published studies were investigated, and bioinformatics analysis of differentially expressed miRNAs in hepatic cancer and metastasis was performed. Metastasis is developed in several stages with specific changes and mechanisms in each stage. Recognition of these changes would lead to detection of new biomarkers and clinical targets involved in specific stages of liver metastasis. Investigation of the hepatic stem cell niche, development of metastasis in liver tissue, as well as changes in chemokines and miRNAs in metastatic hepatic niche can significantly contribute to faster detection of liver metastasis progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.