Internet of Things (IoT) based healthcare system is now at the top peak because of its potentialities among all other IoT applications. Supporting sensors integrated with IoT healthcare can effectively analyze and gather the patients’ physical health data that has made the IoT based healthcare ubiquitously acceptable. A set of challenges including the continuous presence of the healthcare professionals and staff as well as the proper amenities in remote areas during emergency situations need to be addressed for developing a flexible IoT based healthcare system. Besides that, the human entered data are not as reliable as automated generated data. The development of the IoT based health monitoring system allows a personalized treatment in certain circumstances that helps to reduce the healthcare cost and wastage with a continuous improving outcome. We present an IoT based health monitoring system using the MySignals development shield with (Low power long range) LoRa wireless network system. Electrocardiogram (ECG) sensor, body temperature sensor, pulse rate, and oxygen saturation sensor have been used with MySignals and LoRa. Evaluating the performances and effectiveness of the sensors and wireless platform devices are also analyzed in this paper by applying physiological data analysis methodology and statistical analysis. MySignals enables the stated sensors to gather physical data. The aim is to transmit the gathered data from MySignals to a personal computer by implementing a wireless system with LoRa. The results show that MySignals is successfully interfaced with the ECG, temperature, oxygen saturation, and pulse rate sensors. The communication with the hyper-terminal program using LoRa has been implemented and an IoT based healthcare system is being developed in MySignals platform with the expected results getting from the sensors.
A non-invasive, low-powered, and portable electromagnetic (EM) head imaging system is presented using metamaterial (MTM) loaded compact directional 3D antenna. The antenna consists of two slotted dipole elements with 2×3 and 3×3 finite MTM array elements in top and ground, respectively, and folded parasitic elements that operate within the frequency range of 1.12 GHz to 2.5 GHz. The MTM array elements are optimized to enhance the overall performance regarding antenna bandwidth, realized gain, efficiency, and directionality in both free space and proximity to the head model. The mathematical modelling is also analyzed to justify the integration of MTM unit cells to the top and ground side of the antenna. The impact of MTM on SAR analysis is also performed. A tissue-mimicking 3D head phantom is fabricated and measured to validate the antenna performance. A nine-antenna portable setup is used with the fabricated phantom to measure and collect the scattering parameters that are later analyzed to detect and reconstruct the haemorrhage images by applying the updated IC-CF-DMAS algorithm. The overall performance demonstrates the feasibility of the proposed system as a portable platform to successfully detect, locate and monitor the haemorrhages inside the head in EM imaging system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.