The animation of delicate vortical structures of gas and liquids has been of great interest in computer graphics. However, common velocity-based fluid solvers can damp the vortical flow, while vorticity-based fluid solvers suffer from performance drawbacks. We propose a new velocity-based fluid solver derived from a reformulated Euler equation using covectors. Our method generates rich vortex dynamics by an advection process that respects the Kelvin circulation theorem. The numerical algorithm requires only a small local adjustment to existing advection-projection methods and can easily leverage recent advances therein. The resulting solver emulates a vortex method without the expensive conversion between vortical variables and velocities. We demonstrate that our method preserves vorticity in both vortex filament dynamics and turbulent flows significantly better than previous methods, while also improving preservation of energy.
Solving partial differential equations (PDEs) on infinite domains has been a challenging task in physical simulations and geometry processing. We introduce a general technique to transform a PDE problem on an unbounded domain to a PDE problem on a bounded domain. Our method uses the Kelvin Transform, which essentially inverts the distance from the origin. However, naive application of this coordinate mapping can still result in a singularity at the origin in the transformed domain. We show that by factoring the desired solution into the product of an analytically known (asymptotic) component and another function to solve for, the problem can be made continuous and compact, with solutions significantly more efficient and well-conditioned than traditional finite element and Monte Carlo numerical PDE methods on stretched coordinates. Specifically, we show that every Poisson or Laplace equation on an infinite domain is transformed to another Poisson (Laplace) equation on a compact region. In other words, any existing Poisson solver on a bounded domain is readily an infinite domain Poisson solver after being wrapped by our transformation. We demonstrate the integration of our method with finite difference and Monte Carlo PDE solvers, with applications in the fluid pressure solve and simulating electromagnetism, including visualizations of the solar magnetic field. Our transformation technique also applies to the Helmholtz equation whose solutions oscillate out to infinity. After the transformation, the Helmholtz equation becomes a tractable equation on a bounded domain without infinite oscillation. To our knowledge, this is the first time that the Helmholtz equation on an infinite domain is solved on a bounded grid without requiring an artificial absorbing boundary condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.