Novel hydrogel systems based on polyacrylamide/chitosan (PAAM/chitosan) or polyacrylic acid/alginate (PAA/alginate) were prepared, characterized, and applied to reduce the concentrations of dyes in water. These hydrogels were synthetized via a semi-interpenetrating polymer network (semi-IPN) and then characterized by Fourier transformed infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA), and their swelling capacities in water were measured. In the adsorption experiments, methylene blue (MB) was used as a cationic dye, and methyl orange (MO) was used as an anionic dye. The study was carried out using a successive batch method for the dye absorption process and an equilibrium system to investigate the adsorption of MO on PAAM/chitosan hydrogels and MB on PAA/alginate in separate experiments. The results showed that the target hydrogels were synthetized with high yield (more than 90%). The chemical structure of the hydrogels was corroborated by FTIR, and their high thermal stability was verified by TGA. The absorption of the MO dye was higher at pH 3.0 using PAAM/chitosan, and it had the ability to remove 43% of MO within 10 min using 0.05 g of hydrogel. The presence of interfering salts resulted in a 20–60% decrease in the absorption of MO. On the other hand, the absorption of the MB dye was higher at pH 8.5 using PAA/alginate, and it had the ability to remove 96% of MB within 10 min using 0.05 g of hydrogel, and its removal capacity was stable for interfering salts.
New biobased hydrogels were prepared via a semi-interpenetrating polymer network (semi-IPN) using polyacrylamide/chitosan (PAAM/chitosan) hydrogel for the adsorption of As(V) or poly acrylic acid/alginate (PAA/alginate) hydrogel for the adsorption of Cu(II). Both systems were crosslinked using N,N′-methylenebisacrylamide as the crosslinker and ammonium persulfate as the initiating agent. The hydrogels were characterized by SEM, Z-potential, and FTIR. Their performance was studied under different variables, such as the biopolymer effect, adsorbent dose, pH, contact time, and concentration of metal ions. The characterization of hydrogels revealed the morphology of the material, with and without biopolymers. In both cases, the added biopolymer provided porosity and cavities’ formation, which improved the removal capacity. The Z-potential informed the surface charge of hydrogels, and the addition of biopolymers modified it, which explains the further metal removal ability. The FTIR spectra showed the functional groups of the hydrogels, confirming its chemical structure. In addition, the adsorption results showed that PAAM/chitosan can efficiently remove arsenic, reaching a capacity of 17.8 mg/g at pH 5.0, and it can also be regenerated by HNO3 for six cycles. On the other hand, copper-ion absorption was studied on PAA/alginate, which can remove with an adsorption capacity of 63.59 mg/g at pH 4.0, and the results indicate that it can also be regenerated by HNO3 for five cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.