Objectives:Ellagic acid (EA) has shown antinociceptive and anti-inflammatory effects. Inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2) enzymes and also cytokines play a key role in many inflammatory conditions. This study was aimed to investigate the mechanisms involved in the anti-inflammatory effect of EA.Materials and Methods:Carrageenan-induced mouse paw edema model was used for induction of inflammation.Results:The results showed that intraplantar injection of carrageenan led to time-dependent development of peripheral inflammation, which resulted in a significant increase in the levels of tumor necrosis factor α (TNF-α) and interleukin 1 (IL-1) β, nitric oxide (NO) and prostaglandin E2 (PGE2) and also iNOS and COX-2 protein expression in inflamed paw. However, systemic administration of EA (1–30 mg/kg, intraperitoneal [i.p.]) could reduce edema in a dose-dependent fashion in inflamed rat paws with ED50 value 8.41 (5.26–14.76) mg/kg. It decreased the serum concentration of NO, PGE2, aspartate aminotransferase and alanine aminotransferase, and suppress the protein expression of iNOS, COX-2 enzymes, and attenuated the formation of PGE2, TNF-α and IL-1 β in inflamed paw tissue. We also demonstrated that EA significantly decreased the malondialdehyde (MDA) level in liver at 5 h after carrageenan injection. Moreover, histopathological studies indicated that EA significantly diminished migration of polymorphonuclear leukocytes into site of inflammation, as did indomethacin.Conclusions:Collectively, the anti-inflammatory mechanisms of EA might be related to the decrease in the level of MDA, iNOS, and COX-2 in the edema paw via the suppression of pro-inflammatory cytokines (TNFα, IL1 β), NO and PGE2 overproduction.
Patients with hepatic encephalopathy show altered motor function, psychomotor slowing, and hypokinesia, which are reproduced in rats with portacaval shunts (PCS). Increased extracellular glutamate in substantia nigra pars reticulata (SNr) is responsible for hypokinesia in PCS rats. The mechanisms by which liver failure leads to increased extracellular glutamate in SNr remain unclear. Inflammation seems to act synergistically with hyperammonemia to induce neurological alterations in hepatic encephalopathy. It is therefore possible that inflammation-associated alterations may contribute to motor alterations in hepatic encephalopathy. The aim of this work was to assess whether treatment with an antiinflammatory, ibuprofen, is able to normalize extracellular glutamate in SNr and/or to improve hypokinesia in PCS rats. The amounts of the glutamate transporters GLT-1 and EAAC-1 are reduced by 26% and 32%, respectively, in SNr of PCS rats. This reduction is associated with a tenfold increase in extracellular glutamate in SNr and a reduction in motor activity. Chronic treatment with 30 mg/kg ibuprofen completely normalizes the amount of GLT-1 and EAAC-1 and significantly reduces (by 53%) extracellular glutamate in SNr of PCS rats. Moreover, ibuprofen, at 15 or 30 (but not at 5) mg/kg/day, completely eliminates hypokinesia, restoring normal motor activity. This supports the idea that inflammation is a main contributor to the induction of hypokinesia in hepatic encephalopathy. Moreover, these data point to the possible therapeutic utility of decreasing inflammation, by safe procedures, in the treatment of the motor deficits in patients with hepatic encephalopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.