BackgroundAdenovirus (ADV) causes a number of diseases in human, and to date, no specific antiviral therapy is approved against this virus. Thus, searching for effective anti-ADV agents seems to be an urgent requirement. Many studies have shown that components derived from medicinal plants have antiviral activity. Therefore, the present study was aimed to evaluate in vitro anti-ADV activity and also antioxidant potential and total phenolic compounds of black tea (Camellia sinensis) crude extract. MethodsIn this study, the hydroalchoholic extract of black tea was prepared and its anti-ADV activity was evaluated on HEp2 cell line using MTT [3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide] assay. The 50 % inhibitory concentration (IC50) and 50 % cytotoxicity concentration (CC50) of the extract were determined using regression analysis. Its inhibitory effect on adsorption and/or post-adsorption stages of the virus replication cycle was evaluated. To determine antioxidant activity, total phenol content, and flavonoids content of the extract, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, Folin-Ciocalteu method, and aluminum chloride colorimetric method were used, respectively. ResultsThe CC50 and the IC50 of the extract were 165.95±12.7 and 6.62±1.4 µg/mL, respectively, with the selectivity index (SI) of 25.06. This extract inhibited ADV replication in post-adsorption stage. The IC50 of DPPH radical was 8±1.41 μg/mL, compared with butylated hydroxytoluene, with IC50 of 25.41±1.89 μg/mL. The total phenol and flavonoid contents of the extract were 341.8±4.41 mg gallic acid equivalent per gram and 21.1±2.11 mg/g, respectively. ConclusionsHaving SI value of 25.06 with inhibitory effect on ADV replication, particularly during the post-adsorption period, black tea extract could be considered as a potential anti-ADV agent. The antiviral activity of this extract could be attributed to its phenolic compounds.
Background: Obesity and physical inactivity are currently on the rise due to industrialization of the communities, which has recently led to increased incidence of different diseases such as diabetes. Epidemiological studies and figures have demonstrated the growing incidence of diabetes. Relevantly, the side effects of chemical drugs have led patients to use medicinal plants and traditional approaches despite advances in development of chemical drugs. The aim of this review article is to report the medicinal plants and their traditional uses to prevent and treat diabetes according to the findings of ethnobotanical studies conducted in different regions of Iran. Evidence Acquisitions: The search terms including ethnobotany, ethnomedicine, ethnopharmacology, phytopharmacology, phytomedicine, Iran, and traditional medicine in combination with diabetes, blood sugar and hyperglycemic were searched from scientific databases. Results: The results of this article can be a comprehensive guideline, based on ethnobotany of different regions of Iran, to prevent and treat diabetes. According to this review article, certain plant species such as Urtica dioica L., popularly called nettle, in eight regions, Teucrium polium L., popularly called poleigamander, in five regions, and Trigonella foenum-graecum L., Citrullus colocynthis (L.), Schrad., and Juglans regia L. in four regions, were reported to be frequently used to prevent and treat diabetes Conclusions: The introduced medicinal plants in this review can be investigated in further research and produce new drugs with limited side effects
Achillea millefolium L. is cultivated in Iran and widely used in traditional medicine for gastrointestinal disorders. The aim of this study was to determine the effect of hydroalcoholic extract of A. millefolium on the contraction and relaxation of isolated ileum in rat. In this experimental study, aerial parts of A. millefolium were extracted by maceration in ethanol 70% for 72h. Terminal portion of ileum in 100 male Wistar rats was dissected and its contractions were recorded isotonically in an organ bath containing Tyrode solution (37 ºC, pH 7.4) under one gram tension. Acetylcholine (1mM) and KCl (60mM) were used to create isotonic contractions. Propranolol and Nω-Nitro-L-arginine methylester hydrochloride (L-NAME) were used to investigate the mechanisms of action prior to giving the extract to the relevant groups. Data were compared by ANOVA and Turkey's post hoc test.. The results showed that the ileum contraction was induced by KCl and acetylcholine induced contraction was significantly reduced by A. millefolium extract. The cumulative concentrations of A. millefolium relaxed the KCl and acetylcholine induced contractions (n=14, p<0.001). The inhibitory effect of extract on contraction induced by KCl and acetylcholine was not significantly affected neither by propranolol (1μM) nor by L-NAME (100 μM). There was no significant difference in the rate of relaxation by propranolol and L-NAME between the two groups. In conclusion, A. millefolium can inhibit contraction of smooth muscle of ileum in rat, and it can be used for eliminating intestinal spasms. These results suggest that the relaxatory effect of A. millefolium on ileum contractions can be due to the blockade of voltage dependent calcium channels. In addition, the β-adrenoceptors, cholinergic receptors and nitric oxide production are not powerful actors in inhibitory effect of A. millefolium. So, the nitric oxide and adrenergic systems may also be involved in the antispasmodic effect of A. millefolium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.