Angular dependence of the intensity and the emissive wavelength of the laser-induced fluorescence emission in hybrid media (fluorophores+nanoparticles) are investigated using various TiO densities as guest nanoscatterers in the ethanolic solutions of the host Rd6G and coumarin 4 (C4) molecules. It is shown that the intensity of the scattered photons varies in terms of the detection angle. When the nanoscatterer density increases at a certain excitation energy, the angular anisotropy enhances. While the emissive wavelength exhibits the spectral shift in terms of the angular variation for Rd6G fluorophores, it remains invariant for C4-based suspension. In the former case, the emissive wavelength undergoes a spectral shift in terms of angular variation. Several factors such as the optical path length in the scattering media, the excitation volume, and the re-absorption events of the fluorescence emissions by the non-excited molecules strongly affect the spectral features. In fact, the density of the scatterers, the dye concentration, and the interplay between Stokes shift rate and the overlapping between absorption/emission spectra of the given fluorophores are taken into account as the major parameters to form the angular distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.