We study the problem of distributed cooperative learning, where a group of agents seek to agree on a set of hypotheses that best describes a sequence of private observations. In the scenario where the set of hypotheses is large, we propose a belief update rule where agents share compressed (either sparse or quantized) beliefs with an arbitrary positive compression rate. Our algorithm leverages a unified and straightforward communication rule that enables agents to access wide-ranging compression operators as black-box modules. We prove the almost sure asymptotic exponential convergence of beliefs around the set of optimal hypotheses. Additionally, we show a nonasymptotic, explicit, and linear concentration rate in probability of the beliefs on the optimal hypothesis set. We provide numerical experiments to illustrate the communication benefits of our method. The simulation results show that the number of transmitted bits can be reduced to 5−10% of the non-compressed method in the studied scenarios.
Boosting methods are among the best general-purpose and off-the-shelf machine learning approaches, gaining widespread popularity. In this paper, we seek to develop a boosting method that yields comparable accuracy to popular AdaBoost and gradient boosting methods, yet is faster computationally and whose solution is more interpretable. We achieve this by developing MP Boost, an algorithm loosely based on AdaBoost that learns by adaptively selecting small subsets of instances and features, or what we term minipatches (MP), at each iteration. By sequentially learning on tiny subsets of the data, our approach is computationally faster than other classic boosting algorithms. Also as it progresses, MP-Boost adaptively learns a probability distribution on the features and instances that upweight the most important features and challenging instances, hence adaptively selecting the most relevant minipatches for learning. These learned probability distributions also aid in interpretation of our method. We empirically demonstrate the interpretability, comparative accuracy, and computational time of our approach on a variety of binary classification tasks.
We propose a new decentralized average consensus algorithm with compressed communication that scales linearly with the network size n. We prove that the proposed method converges to the average of the initial values held locally by the agents of a network when agents are allowed to communicate with compressed messages. The proposed algorithm works for a broad class of compression operators (possibly biased), where agents interact over arbitrary static, undirected, and connected networks. We further present numerical experiments that confirm our theoretical results and illustrate the scalability and communication efficiency of our algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.