Bioengineered livers (BELs) are an attractive therapeutic alternative to address the donor organ shortage for liver transplantation. The goal of BELs technology aims at replacement or regeneration of the native human liver. A variety of approaches have been proposed for tissue engineering of transplantable livers; the current review will highlight the decellularization-recellularization approach to BELs. For example, vascular patency and appropriate cell distribution and expansion are critical components in the production of successful BELs. Proper solutions to these components of BELs have challenged its development. Several strategies, such as heparin immobilization, heparin-gelatin, REDV peptide, and anti-CD31 aptamer have been developed to extend the vascular patency of revascularized bioengineered livers (rBELs). Other novel methods have been developed to enhance cell seeding of parenchymal cells and to increase graft functionality during both bench and in vivo perfusion. These enhanced methods have been associated with up to 15 days of survival in large animal (porcine) models of heterotopic transplantation but have not yet permitted extended survival after implantation of BELs in the orthotopic position. This review will highlight both the remaining challenges and the potential for clinical application of functional bioengineered grafts.
The Spheroid Reservoir Bioartificial Liver (SRBAL) is an innovative treatment option for acute liver failure (ALF). This extracorporeal support device, which provides detoxification and other liver functions using high-density culture of porcine hepatocyte spheroids, has been reported in three randomized large animal studies. A meta-analysis of these three preclinical studies was performed to establish efficacy of SRBAL treatment in terms of survival benefit and neuroprotective effect. The studies included two hepatotoxic drug models of ALF (D-galactosamine, α-amanitin/lipopolysaccharide) or a liver resection model (85% hepatectomy) in pigs or monkeys. The SRBAL treatment was started in three different settings starting at 12 h, 24 h or 48 h after induction of ALF; comparisons were made with two similar control groups in each model. SRBAL therapy was associated with significant survival and neuroprotective benefits in all three animal models of ALF. The benefits of therapy were dose dependent with the most effective configuration of SRBAL being continuous treatment of 24 h duration and dose of 200 g of porcine hepatic spheroids. Future clinical testing of SRBAL in patients with ALF appears warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.