Pre-sowing seed priming is one of the methods used to improve the performance of tomato plants under salt stress, but its effect photosynthesis, yield, and quality have not yet been well investigated. This experiment aimed to alleviate the impact of sodium chloride stress on the photosynthesis parameters of tomato cv. Micro−Tom (a dwarf Solanum lycopersicum L.) plants exposed to salt stress conditions. Each treatment combination consisted of five different sodium chloride concentrations (0 mM, 50 mM, 100 mM, 150 mM, and 200 mM) and four priming treatments (0 MPa, −0.4 MPa, −0.8 MPa, and −1.2 MPa), with five replications. Microtome seeds were subjected to polyethylene glycol (PEG6000) treatments for 48 hours for priming, followed by germination on a moist filter paper, and then transferred to the germination bed after 24 h. Subsequently, the seedlings were transplanted into the Rockwool, and the salinity treatments were administered after a month. In our study salinity significantly affected tomato plants’ physiological and antioxidant attributes. Primed seeds produced plants that exhibited relatively better photosynthetic activity than those grown from unprimed seeds. Our findings indicated that priming doses of −0.8 MPa and −1.2 MPa were the most effective at stimulating tomato plant photosynthesis, and biochemical contents under salinity-related conditions. Moreover, primed plants demonstrated relatively superior fruit quality features such as fruit color, fruit Brix, sugars (glucose, fructose, and sucrose), organic acids, and vitamin C contents under salt stress, compared to non-primed plants. Furthermore, priming treatments significantly decreased the malondialdehyde, proline, and hydrogen peroxide content in plant leaves. Our results suggest that seed priming may be a long-term method for improving crop productivity and quality in challenging environments by enhancing the growth, physiological responses, and fruit quality attributes of Micro-Tom tomato plants under salt stress conditions.