Several novel cuffless wearable devices and smartphone applications claiming that they can measure blood pressure (BP) are appearing on the market. These technologies are very attractive and promising, with increasing interest among health care professionals for their potential use. Moreover, they are becoming popular among patients with hypertension and healthy people. However, at the present time, there are serious issues about BP measurement accuracy of cuffless devices and the 2021 European Society of Hypertension Guidelines on BP measurement do not recommend them for clinical use. Cuffless devices have special validation issues, which have been recently recognized. It is important to note that the 2018 Universal Standard for the validation of automated BP measurement devices developed by the American Association for the Advancement of Medical Instrumentation, the European Society of Hypertension, and the International Organization for Standardization is inappropriate for the validation of cuffless devices. Unfortunately, there is an increasing number of publications presenting data on the accuracy of novel cuffless BP measurement devices, with inadequate methodology and potentially misleading conclusions. The objective of this review is to facilitate understanding of the capabilities and limitations of emerging cuffless BP measurement devices. First, the potential and the types of these devices are described. Then, the unique challenges in evaluating the BP measurement accuracy of cuffless devices are explained. Studies from the literature and computer simulations are employed to illustrate these challenges. Finally, proposals are given on how to evaluate cuffless devices including presenting and interpreting relevant study results.
Oscillometry is the blood pressure (BP) measurement principle of most automatic cuff devices. The oscillogram (which is approximately the blood volume oscillation amplitude-external pressure function) is measured, and BP is then estimated via an empirical algorithm. The objective was to establish formulas to explain three popular empirical algorithms in the literature—the maximum amplitude, derivative, and fixed ratio algorithms. A mathematical model of the oscillogram was developed and analyzed to derive parametric formulas for explaining each algorithm. Exemplary parameter values were obtained by fitting the model to measured oscillograms. The model and formulas were validated by showing that their predictions correspond to measurements. The formula for the maximum amplitude algorithm indicates that it yields a weighted average of systolic and diastolic BP (0.45 and 0.55 weighting) instead of commonly assumed mean BP. The formulas for the derivative algorithm indicate that it can accurately estimate systolic and diastolic BP (<1.5 mmHg error), if oscillogram measurement noise can be obviated. The formulas for the fixed ratio algorithm indicate that it can yield inaccurate BP estimates, because the ratios change substantially (over a 0.5–0.6 range) with arterial compliance and pulse pressure and error in the assumed ratio translates to BP error via large amplification (>40). The established formulas allow for easy and complete interpretation of perhaps the three most popular oscillometric BP estimation algorithms in the literature while providing new insights. The model and formulas may also be of some value toward improving the accuracy of automatic cuff BP measurement devices.
We developed an iPhone X application to measure blood pressure (BP) via the “oscillometric finger pressing method”. The user presses her fingertip on both the front camera and screen to increase the external pressure of the underlying artery, while the application measures the resulting variable-amplitude blood volume oscillations via the camera and applied pressure via the strain gauge array under the screen. The application also visually guides the fingertip placement and actuation and then computes BP from the measurements just like many automatic cuff devices. We tested the application, along with a finger cuff device, against a standard cuff device. The application yielded bias and precision errors of −4.0 and 11.4 mmHg for systolic BP and −9.4 and 9.7 mmHg for diastolic BP (n = 18). These errors were near the finger cuff device errors. This proof-of-concept study surprisingly indicates that cuff-less and calibration-free BP monitoring may be feasible with many existing and forthcoming smartphones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.