Automated seizure prediction has a potential in epilepsy monitoring, diagnosis, and rehabilitation. Electroencephalogram (EEG) is widely used for seizure detection and prediction. This paper proposes a new seizure prediction approach based on spatiotemporal relationship of EEG signals using phase correlation. This measures the relative change between current and reference vectors of EEG signals which can be used to identify preictal/ictal (before the actual seizure onset/ actual seizure period) and interictal (period between adjacent seizures) EEG signals to predict the seizure. The experiments show that the proposed method is less sensitive to artifacts and provides higher prediction accuracy (i.e., 91.95%) and lower number of false alarms compared to the state-of-the-art methods using intracranial EEG signals in different brain locations of 21 patients from a benchmark data set.
In this study, a seizure prediction method is proposed based on a patient-specific approach by extracting undulated global and local features of preictal/ictal and interictal periods of EEG signals. The proposed method consists of feature extraction, classification, and regularization. The undulated global feature is extracted using phase correlation between two consecutive epochs of EEG signals and an undulated local feature is extracted using the fluctuation and deviation of EEG signals within the epoch. These features are further used for classification of preictal/ictal and interictal EEG signals. A regularization technique is applied on the classified outputs for the reduction of false alarms and improvement of the overall prediction accuracy (PA). The experimental results confirm that the proposed method provides high PA (i.e., 95.4%) with low false positive per hour using intracranial EEG signals in different brain locations of 21 patients from a benchmark dataset. Combining global and local features enables the transition point to be determined between different types of signals with greater accuracy, resulting successful versus unsuccessful prediction of seizure. The theoretical contribution of this study may provide an opportunity for the development of a clinical device to predict forthcoming seizure in real time.
The recognition of emotions is a vast significance and a high developing field of research in the recent years. The applications of emotion recognition have left an exceptional mark in various fields including education and research. Traditional approaches used facial expressions or voice intonation to detect emotions, however, facial gestures and spoken language can lead to biased and ambiguous results. This is why, researchers have started to use electroencephalogram (EEG) technique which is well defined method for emotion recognition. Some approaches used standard and pre-defined methods of the signal processing area and some worked with either fewer channels or fewer subjects to record EEG signals for their research. This paper proposed an emotion detection method based on time-frequency domain statistical features. Box-and-whisker plot is used to select the optimal features, which are later feed to SVM classifier for training and testing the DEAP dataset, where 32 participants with different gender and age groups are considered. The experimental results show that the proposed method exhibits 92.36% accuracy for our tested dataset. In addition, the proposed method outperforms than the state-of-art methods by exhibiting higher accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.