The aim of this work was to establish and characterize chitosan/graphene oxide- magnesium oxide (CS/GO-MgO) nanocomposite coatings on biodegradable magnesium-zinc-cerium (Mg-Zn-Ce) alloy. In comparison to that of pure CS coatings, all composite coatings encapsulating GO-MgO had better adhesion strength to the Mg-Zn-Ce alloy substrate. The result depicted that the co-encapsulation of GO-MgO into the CS layer leads to diminish of contact angle value and hence escalates the hydrophilic characteristic of coated Mg alloy. The electrochemical test demonstrated that the CS/GO-MgO coatings significantly increased the corrosion resistance because of the synergistic effect of the GO and MgO inside the CS coating. The composite coating escalated cell viability and cell differentiation, according to cytocompatibility tests due to the presence of GO and MgO within the CS. The inclusion of GO-MgO in CS film, on the other hand, accelerates the formation of hydroxyapatite (HA) during 14 days immersion in SBF. Immersion results, including weight loss and hydrogen evolution tests, presented that CS/GO-MgO coating enables a considerably reduced degradation rate of Mg-Zn-Ce alloy when compared to the bare alloy. In terms of antibacterial-inhibition properties, the GO-MgO/CS coatings on Mg substrates showed antibacterial activity against Escherichia coli (E. coli), with a large inhibition area around the specimens, particularly for the coating containing a higher concentration of GO-MgO. Bacterial growth was not inhibited by the bare Mg alloy samples. The CS/GO-MgO composite coating is regarded as a great film to enhance the corrosion resistance, bioactivity, and antibacterial performance of Mg alloy implants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.