Geosynthetic-reinforced pile-supported (GRPS) embankments are widely used in soft soil regions to support roadways. Various design methods for GRPS embankments have been developed; however, engineering experience and recent research have shown that the performance of these design methods varies case by case. This paper systematically evaluates the performance of several empirical GRPS embankment design methods, which include the BS8006 method, the Nordic method, the EBGEO method, the FHWA method, and the CUR226 method. A preliminary assessment of these methods using three field case studies confirms that their performances differ from each other and from field measurements, the differences sometimes being quite significant. To enable a more systematic evaluation of the design methods, a validated finite element model (FEM) was first used to conduct a comprehensive parametric study considering typical soft soil conditions and various geometrical parameters, the results of which served as a baseline for the evaluation of the design methods. The efficacy, stress concentration ratio, maximum differential settlement, and maximum reinforcement tension were used as indicators for the method evaluation. The results show that, overall, the CUR226 method outperforms other design methods. The percentage difference between the CUR226 method and FEM can be as small as 5%, and the maximum value is 130%. It was also found that the Nordic method does not apply to small embankment heights, and that the BS8006 method provides a large overestimation of reinforcement tension when pile spacing is large (>4 ft) for all embankment heights considered.
In recent times, geopolymer has gained attention as a soil stabilization binder due to its ability to improve soil’s engineering properties while remaining eco-friendly. This study seeks to investigate the stabilization of soft soil using palm oil fuel ash (POFA)-based geopolymers. The geopolymer was created by combining POFA with an alkaline activator solution composed of sodium hydroxide (NaOH) and sodium silicate (Na2SiO3). The mechanical and microstructural behaviour of two clayey soil types stabilized with four doses of POFA-based geopolymer (G10PA, G20PA, G30PA, G40PA) was studied by conducting one-dimensional consolidation, California Bearing Ratio (CBR), Field Emission Scanning Electron Microscopy (FESEM), and X-Ray Diffraction (XRD) tests. The optimum dosage found was G40PA in both soil samples. The CBR value of S1-G40PA was 1.7 times the S1 while S2-G40PA was nearly 1.5 times the S2. The void ratio of S1 was significantly reduced from 0.70 (untreated sample) to 0.56 (S2-G40PA), whereas for S2, it was decreased from 1.43 (untreated sample) to 0.43 (S2-G40PA). The microstructural analysis (FESEM) revealed that changes in material composition correlate to consolidation behaviour, with the geopolymer gel-binding effect enhancing the mechanical properties of stabilized soils.
The construction of integral bridges is one of the most effective methods to reduce bridges’ construction and in-service costs. However, there are associated geotechnical problems with their abutments backfill due to the integrated abutments. The main goal of this study is to evaluate and quantify the benefits of geogrid reinforcement for reducing the backfill’s geotechnical problems. For this purpose, using small-scale physical modeling, the benefits of geogrid reinforcing of the backfill of an integral abutment bridge subjected to cyclic movements are evaluated. The results are then compared with a previous study performed on unreinforced backfill and two types of geocells. In this study, 120 loading cycles are applied to geogrid-reinforced soil to simulate the cyclic loadings on integral abutment backfill due to seasonal abutment displacement. The horizontal reaction load at the top of the wall, changes in pressure behind the wall, and deformation in backfill soil are measured during the test. Then the results are discussed in terms of equivalent peak lateral soil coefficient (Kpeak), lateral earth pressure coefficient (K*), and normalized settlement behind the wall (Sg/H). The derived lateral soil coefficients and settlement behind the abutment show that geogrid substantially reduces pressure and settlements after 120 cyclic loads. Based on the results, Kpeak and K* of the geogrid-reinforced backfill decrease by up to 36%, and Sg/H behind the wall decreases by 62%. In addition, the comparison of the results for geogrid with two geocell types shows that geogrid is more efficient in terms of lateral soil coefficients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.