Patients with extensive burns rely on the use of tissue engineered skin due to a lack of sufficient donor tissue, but it is a challenge to identify reliable and economical scaffold materials and donor cell sources for the generation of a functional skin substitute. The current review attempts to evaluate the performance of the wide range of biomaterials available for generating skin substitutes, including both natural biopolymers and synthetic polymers, in terms of tissue response and potential for use in the operating room. Natural biopolymers display an improved cell response, while synthetic polymers provide better control over chemical composition and mechanical properties. It is suggested that not one material meets all the requirements for a skin substitute. Rather, a composite scaffold fabricated from both natural and synthetic biomaterials may allow for the generation of skin substitutes that meet all clinical requirements including a tailored wound size and type, the degree of burn, the patient age, and the available preparation technique. This review aims to be a valuable directory for researchers in the field to find the optimal material or combination of materials based on their specific application.
BackgroundCompromised wound healing has become a global public health challenge which presents a significant psychological, financial, and emotional burden on patients and physicians. We recently reported that acellular gelatinous Wharton’s jelly of the human umbilical cord enhances skin wound healing in vitro and in vivo in a murine model; however, the key player in the jelly which enhances wound healing is still unknown.MethodsWe performed mass spectrometry on acellular gelatinous Wharton’s jelly to elucidate the chemical structures of the molecules. Using an ultracentrifugation protocol, we isolated exosomes and treated fibroblasts with these exosomes to assess their proliferation and migration. Mice were subjected to a full-thickness skin biopsy experiment and treated with either control vehicle or vehicle containing exosomes. Isolated exosomes were subjected to further mass spectrometry analysis to determine their cargo.ResultsSubjecting the acellular gelatinous Wharton’s jelly to proteomics approaches, we detected a large amount of proteins that are characteristic of exosomes. Here, we show that the exosomes isolated from the acellular gelatinous Wharton’s jelly enhance cell viability and cell migration in vitro and enhance skin wound healing in the punch biopsy wound model in mice. Mass spectrometry analysis revealed that exosomes of Wharton’s jelly umbilical cord contain a large amount of alpha-2-macroglobulin, a protein which mimics the effect of acellular gelatinous Wharton’s jelly exosomes on wound healing.ConclusionsExosomes are being enriched in the native niche of the umbilical cord and can enhance wound healing in vivo through their cargo. Exosomes from the acellular gelatinous Wharton’s jelly and the cargo protein alpha-2-macroglobulin have tremendous potential as a noncellular, off-the-shelf therapeutic modality for wound healing.Electronic supplementary materialThe online version of this article (10.1186/s13287-018-0921-2) contains supplementary material, which is available to authorized users.
Wound healing is vital for patients with complex wounds including burns. While the gold standard of skin transplantation ensures a surgical treatment to heal wounds, it has its limitations, for example, insufficient donor sites for patients with large burn wounds and creation of wounds and pain when harvesting the donor skin. Therefore, tissue-engineered skin is of paramount importance. The aim of this study is to investigate and characterize an elastomeric acellular scaffold that would demonstrate the ability to promote skin regeneration. A hybrid gelatin-based electrospun scaffold is fabricated via the use of biodegradable polycarbonate polyurethane (PU). It is hypothesized that the addition of PU would enable a tailored degradation rate and an enhanced mechanical strength of electrospun gelatin. Introducing 20% PU to gelatin scaffolds (Gel80–PU20) results in a significant increase in the degradation resistance, yield strength, and elongation of these scaffolds without altering the cell viability. In vivo studies using a mouse excisional wound biopsy grafted with the scaffolds reveals that the Gel80–PU20 scaffold enables greater cell infiltration than clinically established matrices, for example, Integra (dermal regeneration matrix, DRM), a benchmark scaffold. Immunostaining shows fewer macrophages and myofibroblastic cells on the Gel80–PU20 scaffold when compared with the DRM. The findings show that electrospun Gel80–PU20 scaffolds hold potential for generating tissue substitutes and overcoming some limitations of conventional wound care matrices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.