Copy number aberrations (CNAs), which are pathogenic copy number variations (CNVs), play an important role in the initiation and progression of cancer. Single-cell DNA-sequencing (scDNAseq) technologies produce data that is ideal for inferring CNAs. In this review, we review eight methods that have been developed for detecting CNAs in scDNAseq data, and categorize them according to the steps of a seven-step pipeline that they employ. Furthermore, we review models and methods for evolutionary analyses of CNAs from scDNAseq data and highlight advances and future research directions for computational methods for CNA detection from scDNAseq data.
Deep Learning (DL) has recently enabled unprecedented advances in one of the grand challenges in computational biology: the half-century-old problem of protein structure prediction. In this paper we discuss recent advances, limitations, and future perspectives of DL on five broad areas: protein structure prediction, protein function prediction, genome engineering, systems biology and data integration, and phylogenetic inference. We discuss each application area and cover the main bottlenecks of DL approaches, such as training data, problem scope, and the ability to leverage existing DL architectures in new contexts. To conclude, we provide a summary of the subject-specific and general challenges for DL across the biosciences.
Single-cell DNA sequencing technologies are enabling the study of mutations and their evolutionary trajectories in cancer. Somatic copy number aberrations (CNAs) have been implicated in the development and progression of various types of cancer. A wide array of methods for CNA detection has been either developed specifically for or adapted to singlecell DNA sequencing data. Understanding the strengths and limitations that are unique to each of these methods is very important for obtaining accurate copy number profiles from single-cell DNA sequencing data. We benchmarked three widely used methods-Ginkgo, HMMcopy, and CopyNumber-on simulated as well as real datasets. To facilitate this, we developed a novel simulator of single-cell genome evolution in the presence of CNAs. Furthermore, to assess performance on empirical data where the ground truth is unknown, we introduce a phylogeny-based measure for identifying potentially erroneous inferences. While single-cell DNA sequencing is very promising for elucidating and understanding CNAs, our findings show that even the best existing method does not exceed 80% accuracy. New methods that significantly improve upon the accuracy of these three methods are needed. Furthermore, with the large datasets being generated, the methods must be computationally efficient.
Intelligence is the ability to learn from experience and use domain experts’ knowledge to adapt to new situations. In this context, an intelligent Recommender System should be able to learn from domain experts’ knowledge and experience, as it is vital to know the domain that the items will be recommended. Traditionally, Recommender Systems have been recognized as playlist generators for video/music services (e.g., Netflix and Spotify), e-commerce product recommenders (e.g., Amazon and eBay), or social content recommenders (e.g., Facebook and Twitter). However, Recommender Systems in modern enterprises are highly data-/knowledge-driven and may rely on users’ cognitive aspects such as personality, behavior, and attitude. In this paper, we survey and summarize previously published studies on Recommender Systems to help readers understand our method’s contributions to the field in this context. We discuss the current limitations of the state of the art approaches in Recommender Systems and the need for our new approach: A vision and a general framework for a new type of data-driven, knowledge-driven, and cognition-driven Recommender Systems, namely, Cognitive Recommender Systems. Cognitive Recommender Systems will be the new type of intelligent Recommender Systems that understand the user’s preferences, detect changes in user preferences over time, predict user’s unknown favorites, and explore adaptive mechanisms to enable intelligent actions within the compound and changing environments. We present a motivating scenario in banking and argue that existing Recommender Systems: (i) do not use domain experts’ knowledge to adapt to new situations; (ii) may not be able to predict the ratings or preferences a customer would give to a product (e.g., loan, deposit, or trust service); and (iii) do not support data capture and analytics around customers’ cognitive activities and use it to provide intelligent and time-aware recommendations.
Copy number aberrations (CNAs) are ubiquitous in many types of cancer. Inferring CNAs from cancer genomic data could help shed light on the initiation, progression, and potential treatment of cancer. While such data have traditionally been available via ``bulk sequencing", the more recently introduced techniques for single-cell DNA sequencing (scDNAseq) provide the type of data that makes CNA inference possible at the single-cell resolution. In this paper, we introduce a new birth-death evolutionary model of CNAs as well as a Bayesian method, NestedBD, for the inference of evolutionary trees (topologies and branch lengths with relative mutation rates) from single-cell data under this model. We assessed the accuracy of our method on both simulated and biological data and compared it to the accuracy of two standard phylogenetic tools, namely neighbor-joining and maximum parsimony (MP). We show through simulations that our method infers more accurate topologies and branch lengths. We also studied the ancestral state reconstruction accuracy with the birth-death evolutionary model and found it outperformed MP. Finally, running all three methods on a colorectal cancer data set, we observed that among all three methods, only the phylogeny inferred by NestedBD clearly separated the primary tumor cells from the metastatic ones, providing a more plausible history of the tumor cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.