This paper reports a study undertaken to achieve a compatible and affordable technique for the high-quality dispersion of carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) in an aqueous suspension to be used in multifunctional cementitious composites. In this research work, two noncovalent surfactants with different dispersion mechanisms (Pluronic F-127 (nonionic) and sodium dodecylbenzene sulfonate (SDBS) (ionic)) were used. We evaluated the influences of various factors on the dispersion quality, such as the surfactant concentration, sonication time, and temperature using UV-visible spectroscopy, optical microscopic image analysis, zeta potentials, and particle size measurement. The effect of tributyl phosphate (TBP) used as an antifoam agent was also evaluated. The optimum suspensions of each surfactant were used to produce cementitious composites, and their mechanical, microstructural, electrical, and thermal behaviors were assessed and analyzed. The best dispersed CNT+GNP aqueous suspensions using Pluronic and SDBS were obtained for concentrations of 10% and 5%, respectively, with 3 hours of sonication, at 40°C, with TBP used for both surfactants. The results also demonstrate that cementitious composites reinforced with CNT+GNP/Pluronic showed better mechanical performance and microstructural characteristics due to the higher quality of the dispersion and the increasing hydration rate. Composites prepared with an SDBS suspension demonstrated lower electrical and thermal conductivities compared to those of the Pluronic suspension due to changes in the intrinsic properties of CNTs and GNPs by the SDBS dispersion mechanism.
In this paper a hybrid combination of carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) was used for developing cementitious self-sensing composite with high mechanical, microstructural and durability performances. The mixture of these two nanoparticles with different 1D and 2D geometrical shapes can reduce the percolation threshold to a certain amount which can avoid agglomeration formation and also reinforce the microstructure due to percolation and electron quantum tunneling amplification. In this route, different concentrations of CNT + GNP were dispersed by Pluronic F-127 and tributyl phosphate (TBP) with 3 h sonication at 40 °C and incorporated into the cementitious mortar. Mechanical, microstructural, and durability of the reinforced mortar were investigated by various tests in different hydration periods (7, 28, and 90 days). Additionally, the piezoresistivity behavior of specimens was also evaluated by the four-probe method under flexural and compression cyclic loading. Results demonstrated that hybrid CNT + GNP can significantly improve mechanical and microstructural properties of cementitious composite by filler function, bridging cracks, and increasing hydration rate mechanisms. CNT + GNP intruded specimens also showed higher resistance against climatic cycle tests. Generally, the trend of all results demonstrates an optimal concentration of CNT (0.25%) + GNP (0.25%). Furthermore, increasing CNT + GNP concentration leads to sharp changes in electrical resistivity of reinforced specimens under small variation of strain achieving high gauge factor in both flexural and compression loading modes.
In this study, a self-sensing cementitious stabilized sand (CSS) was developed by the incorporation of hybrid carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) based on the piezoresistivity principle. For this purpose, different concentrations of CNTs and GNPs (1:1) were dispersed into the CSS, and specimens were fabricated using the standard compaction method with optimum moisture. The mechanical and microstructural, durability, and piezoresistivity performances, of CSS were investigated by various tests after 28 days of hydration. The results showed that the incorporation of 0.1%, 0.17%, and 0.24% CNT/GNP into the stabilized sand with 10% cement caused an increase in UCS of about 65%, 31%, and 14%, respectively, compared to plain CSS. An excessive increase in the CNM concentration beyond 0.24% to 0.34% reduced the UCS by around 13%. The addition of 0.1% CNMs as the optimum concentration increased the maximum dry density of the CSS as well as leading to optimum moisture reduction. Reinforcing CSS with the optimum concentration of CNT/GNP improved the hydration rate and durability of the specimens against severe climatic cycles, including freeze–thaw and wetting–drying. The addition of 0.1%, 0.17%, 0.24%, and 0.34% CNMs into the CSS resulted in gauge factors of about 123, 139, 151, and 173, respectively. However, the Raman and X-ray analysis showed the negative impacts of harsh climatic cycles on the electrical properties of the CNT/GNP and sensitivity of nano intruded CSS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.